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An Evaluation of Redundant Arrays of Disks using an Amdahl 5890 

Peter M. Chen 
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ABSTRACT 

l/0 systems are increasingly becoming a major performance limitation to faster 

computer systems. Recently we presented several disk array architectures designed to 

increase the data rate and l/0 rate of supercomputing applications, transaction process­

ing, and file systems [Patterson 88]. In this paper we present a hardware performance 

measurement of two of these architectures, mirroring and rotated parity. We see how 

throughput for these two architectures is affected by response time, request size, and the 

ratio of reads and writes. We also explore tradeoffs in the unit of interleaving and 

number of disks. We find that for applications with large accesses, such as many super­

computing applications, a rotated parity disk array far outperforms traditiOnal mirroring 

architecture. In conttast, for applications with many small accesses, such as transaction 

processing and traditional file systems, mirroring disk arrays outperform rotated parity 

disk arrays. 
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An Evaluation of Redundant Arrays of Disks using an Amdahl 5890 

1. The 1/0 Crisis 

Over the past 10 years, processing speed, memory speed and capacity, and disk capacity have all 

grown tremendously: 

• Single chip processors have increased in speed at the rate of 40%-100% per year [Bell84, Joy 85] 

• Caches have increased in speed 40% to 100% per year 

• Main memory has quadrupled in capacity every two or three years [Moore 75, Myers 86] 

In contrast, disk access times have undergone only modest performance improvements. For example, seek 

time has improved only about 7% per year [Harker 81]. If not remedied, this imbalanced system growth 

will eventually lead to I/0 limited systems [Amdahl67, Kim 87]. Continued improvement in system per­

formance depends in a large part on I/0 systems with higher data rate and I/0 rate. 

One way to increase 1/0 performance is by using an array of many disks [Kurzweil 88]. By using 

many disks, both throughput (MB per second) and 1/0 rate (I/O's per second). can be increased. 

Throughput can be increased by having many disks cooperate in ttansferring one block of information; the 

I/0 rate can be increased by having multiple independent disks service multiple independent requests. 

With multiple disks, however, comes lower reliability. According to the commonly used exponential 

model for disk failures [Schulze 88], 100 disks have a combined failure rate of 100 times the failure rate of 

a single disk. If every disk failure caused data loss, a 100 disk array would lost data every few hundred 

hours. This is intolerable for a supposedly stable storage system. To protect against data loss in the face of 

a single disk failure, some sort of data redundancy must exist 

This paper analyzes the performance of several disk array redundancy schemes. The performance 

analysis is based on a set of experiments carried out on Amdahl hardware. In these experiments, we 

explore several issues: 

• What are the basic differences in throughput and response time between the various redundancy 

schemes? 

• For each redundancy scheme, how do different response time requirements affect throughput? 
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• How does changing the size of an I/0 request affect performance of the redundancy schemes? 

• How does changing the read/write ratio affect performance of the redundancy schemes? 

e What affect does interleaving data in different units have on performance? 

• How do the redundancy schemes scale with increasing numbers of disks? 

2. Introduction to Redundant Arrays or Disks 

In "A Case for Redundant Arrays of Inexpensive Disks (RAID)", henceforth referred to as "The 

RAID paper" [Patterson 88], Patterson, Gibson, and Katz present five ways to introduce redundancy into an 

array of disks: RAID Level 1 through RAID Level 5. Using a simple performance model of these five 

organizations, they conclude that RAID Level 1, mirrored disks, and RAID Level 5, rotated parity, have 

the best performance potential. This paper focuses on these two RAID Levels, plus the additional RAID 

Level 0. RAID Level 0 is a non-redundant array of disks, and is added mainly to provide a hasis of com­

parison between RAID Levels 1 and 5. Figure 1 shows the data layout in the three redundancy schemes. 

The rest of this section summarizes the RAID Levels--see [Patterson 88] for more details. 

In all organizations, data are interleaved across the disks [Kim 86, Salem 86]. We define a stripe of 

data to be one unit of interleaving from each disk. For example, the first stripe of data in Figure 1 consists 

of logical blocks 0, 1, 2, and 3. The storage efficiency, a measure of the capacity cost of redundancy, is 

defined to be the effective (user) data capacity divided by the total disk capacity. For RAID Level 0, the 

effective data capacity equals the total disk capacity, so the storage efficiency is 100%. 

RAID Level 1, mirrored disks, is a traditional way to incorporate redundancy in an array of disks 

[Bitton 88]. In RAID Level 1, each datum is kept on two distinct disks: a data disk and a shadow disk. 

Thus, for RAID Level I, the effective storage capacity is half the total disk capacity and the storage 

efficiency is 50%. Reads can be serviced by either the data disk or the shadow disk, but, to maintain con­

sistency, ·.vrites must be serviced by both data and shadow disk. 

RAID Level 5, rotated parity, incorporates redundancy by maintaining parity across all disks. For 

example, PO in Figure 1 b is the parity of logical blocks 0, 1, 2, and 3. Parity will have to be updated when­

ever data is written. If all parity information was kept on one disk, this disk would see many more requests 

than any data disk. To avoid a bottleneck in accessing the parity information, it is spread over all disks. 
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Figure 1: Three RAID architectures. Data (logical blocks) are interleaved across multiple disks with various redundancies added. In RAID Level 0 (Figure 1a), no redundancy exists. Each stripe of data con­sists of a logical block from each disk. In RAID Level 1 (Figure 1c), each data disk (disks 0-3) has a sha­dow disk (disks 4-7). In RAID Level 5 (Figure 1b), parity for each stripe is kept in a parity block. Which physical disk the parity block is kept on is different for different stripes. 

There are many ways to spread this parity information across disks, but this is not within the scope of this 

paper. Instead, we have chosen one mapping of parity information onto disks. As shown in Figure 1 b, par-

ity for stripe 0 is kept on disk 0; parity for stripe I is kept on disk 1, and so on. If there are N disks in the 

array, the storage efficiency is ~. 
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3. A Simple Performance Model 

In this section we present the simple performance model used by the RAID paper to compare RAID 

Levels. First, some terminology is needed. The user request to read or write data is called a logical 

request. A physical request refers to a logical request after it has been mapped onto the disk array. Often, 

due to redundancy information, the physical request will involve more disk blocks than the logical request. 

A disk access refers to one contiguous read or write of one disk. Physical requests result in one or more 

disk accesses. A logical request that involves all the data in a stripe is called a full stripe request. A logical 

request that involves only part of the data in a stripe is a partial stripe request. A special type of partial 

stripe request is an individual request, which is a request to exactly one disk's part of a stripe. 

The model in the RAID paper is concerned with the maximum possible throughput of a disk system. 

The model drives the disk system with four types of logical requests: full stripe reads, full stripe writes, 

individual reads, and individual writes. To estimate maximum possible throughput, we consider the 

efficiency of a RAID: the number of disk accesses of a logical request divided by the number of disk 

accesses in its corresponding physical request. 

Because RAID Level 0 has no redundant information, the number of disk accesses in a physical 

request is always the same as in its logical request. Thus RAID Level 0 has an efficiency of 100%, that is, 

100% of the disk accesses involve useful data. We normalize throughput of a RAID by defining relative 

throughput of a RAID system running a particular workload as the throughput of that RAID system relative 

to the throughput of a non-redundant array (RAID Level 0) running the same workload (matching work­

loads will be described later). The simple model estimates relative throughput by the fraction of disk 

accesses involving useful data. For example, if the physical request involves twice as many disks accesses 

as its corresponding logical request, i.e. the logical to physical mapping doubled the number of disks 

accesses involved, then 50% of the disk accesses would involve useful data and the simple model would 

estimate the relative throughput to be 50%. 

For all the RAID Levels that we are concerned with, assuming no failed disks, data can be read 

without accessing any redundancy information (these experiments do not measure performance when one 

or more disks are not operational). Because of this, the mapping from logical read requests to physical 

requests adds no extra disks, and the simple model predicts a relative throughput for RAID Levels 0, 1, and 
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5 reads of 100%. As mentioned above, RAID Level 0 also has, by definition, a relative throughput of 

100% for writes. However, for RAID Levels 1 and 5, physical write requests involve more disk accesses 

than their logical write requests, and relative throughput becomes less than 100%. 

To write data in RAID Level 1, both the data disk and the shadow disk must be written. Thus, a 

RAID Level 1 physical write request has twice the number of disk accesses as the corresponding logical 

request The simple model estimates relative throughput at 50% for any size RAID Level 1 write. 

For RAID LevelS, both the data disk(s) and the parity information need to be updated. To compute 

the new parity, some reads may need to be issued. Some of these reads snapshot the image on disk before 

those blocks are overwritten. We call these pre-reads. How much information needs to be read depends 

on the size of the logical write request For full stripe writes, no reads are needed, since the new data com­

pletely determines the new parity of the stripe. Thus, with an N disk array, a full stripe logical write 

request involves N-1 disk accesses, and the physical request involves N disk accesses. This leads us to 

estimate relative throughput as !!.if-. For partial stripe writes, parity may be computed either by 1) pre­

reading the current (before writing) data on the data disk(s) and current parity of the stripe or 2) reading the 

current data in the rest of the stripe. For example, in Figure 1 b, to write logical blocks 0 and 1, we can 

either 1) pre-read logical blocks 0 and 1 and parity block PO or 2) read logical blocks 2 and 3. With a par­

tial stripe write of D (less than N-1) data disks, the first method of computing parity involves 0+1 disk 

pre-reads, and the second method involves N-(D+1) disk reads. For an individual stripe request (D=1) 

the first method is better for N~4. With this first method, an individual request, involving one disk access, 

generates a physical request involving four disk accesses (two to read the current data and current parity 

and two to write the new data and new parity). This leads us to estimate relative throughput-as 25% for 

individual stripe writes in RAID LevelS. 

The estimates for full and individual requests for both RAID Levels 1 and 5 are summarized in Fig-

ure2. 

4. Goals and Refinements 

Our overall goal is to understand more fully how RAID Levels 1 and 5 perform. This includes 

exploring aspects of implementation, workload characterization, and performance evaluation. In 
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Figure 2: Relative Throughput According to a Simple Model. Shown is the estimated throughput of 
RAID Level I (mirrored RAID) and RAID Level 5 (rotated parity RAID) as a percentage of the estimated 
throughput of RAID Level 0 (non-redundant RAID) [Patterson 88]. RAID Level 5 large write perfor­
mance is calculated assuming !!total disks (N=ll). 

particular, the performance estimates above dealt with maximum possible throughput, expressed in terms 

of relative throughput. A specific goal of the experiments described here is to measure the performance of 

RAID Levels I and 5 and to compare this measured performance against the simple performance estimates 

in the RAID paper. The performance characterization in these experiments differs from the RAID paper in 

the following areas: 

• Real hardware: The analysis done in the RAID paper was a purely theoretical analysis. It assumed a 

constant time for disk accesses and ignored processing overhead. Because these experiments were car-

ried out on an actual machine with disks, they have no need to make any of these simplifying assump-

tions. 



-7-

• Response time: The only performance metric in the RAID paper was maximum possible throughput. 

These experiments will measure and control both throughput and response time. 

• Synthetic workload: Because the analysis in the RAID paper was theoretical, it used extremely simple, 

therefore unrealistic, workloads. These experiments refine the workloads in three ways: 

(1) The RAID paper workloads had a constant logical request size of either 100% full stripe 

requests or 100% individual requests. These experiments deal with a distribution of request 

sizes, including partial stripe accesses and accesses larger than a full stripe. 

(2) The RAID paper workloads were either 100% reads or 100% writes. These experiments 

explore a range of read/write ratios. 

(3) The RAID paper used an infinite workload, i.e. the disks were fully utilized. These experi­

ments introduce contention, resulting in more realistic (suboptimal) disk utilization. 

Note that these experiments are not running application programs (benchmarks), but rather an 

artificially generated distribution of l/0 requests (synthetic workload). We choose to use synthetic work­

loads because they are easier to parameterize than benchmarks, making it possible to explore a range of 

different user workloads. Also, running application programs require an underlying file system, which we 

do not have. 

S. Comparing RAID Levels 

When comparing RAID Levels, we are interested in performance (throughput and response time) 

and cost Comparing RAID Levels in these two areas is no easy task. Because the storage efficiency 

differs between RAID Levels 0 (100%). 1 (50%), and 5 (-!!-~),RAID systems with the s~e user data 

capacity need different numbers of disks. Alternatively, with a fixed number of disks, different RAID Lev­

els will have different user data capacities. There are at least two ways to address this issue. 

5.1. Constant Number of Total Disks 

The first option is to keep the total number of disks constant between RAID Levels Comparing costs 

with this option is trivial. Since all RAID Levels use identical hardware, cost is equal. However, compar­

ing the performance of such RAID systems is tricky. To have a valid basis for comparison, equal work-
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loads must be presented to all systems. Unfortunately, it is unclear how to define an equal workload 

between systems with different data capacities. For example, consider two disk systems, A and B, both 

with the same number of total disks. Suppose that system A has a storage efficiency of 50% and system B 

has a storage efficiency of 100%. Thus, system B has twice the user data capacity as system A. If A and B 

receive the same workload, then the data in B is accessed half as frequently as the data in A. To compen­

sate, we may wish to present B with double the workload that A receives. Unfortunately, it is unclear what 

constitutes double a workload: double the request rate? Double the request size? Double the unit of inter­

leaving? The second option in comparing RAID Levels takes a different approach to resolve this difficulty. 

5.2. Constant Number or Data Disks 

The second option, which is the one used in these experiments, maintains equal data capacities 

between RAID Levels. Presenting identical workloads to each system makes comparing performance far 

simpler. However, with D disks of user data, RAID Level 0 needs D total disks, RAID Level 1 needs 2D 

total disks and RAID Level 5 needs D+l total disks. Thus, costs and raw disk bandwidth of the different 

RAID Levels are no longer equal. We must therefore factor in costs when presenting performance. 

One method to factor in costs is to simply present the raw performance and cost separately For 

example, in one of the experiments, a RAID Level 1 used 20 disks and yielded a throughput of 20 MB/s. 

The corresponding RAID Level 5 system used II disks and yielded a throughput of 10 MB/s. In general, 

RAID Level 1 needs nearly twice as many disks as RAID Level 5 and has much higher cosL Then, having 

more disks, RAID Level 1 generally yields higher performance than RAID Level 5. It then becomes the 

reader's responsibility to synthesize this performance and cost data. 

A second method to combine performance and cost is to divide the performance by the number of 

disks. As this only makes sense for throughput, response time will be addressed separately. RAID Level I 

has twice as many disks as RAID Level 0, and so we divide RAID Level I throughput by two to normalize 

relative to RAID Level 0. By dividing the throughput by the number of disks, we are tacitly assuming that 

a RAID Level 0 with 2D disks should perform twice as well as a RAID Level 0 with D disks (see section 

10.3). This assumption can be false if performance is not disk limited. In general, we may be unfairly 

penalizing RAID Level I because we are not providing RAID Level I with twice the total resources (pro-
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cessor, memory, etc.) of RAID Level 0. We are only doubling the disk resources. In particular, if CPU 

power is the limiting factor to performance, then doubling the disk resources will not double throughput. 

CPU power tends to limit performance as more disks are used. Therefore, we limit the number of disks 

used to ensure that CPU power does not greatly impact performance and RAID Levels with more disks are 

not unfairly penalized. We will limit almost all experiments in this paper to 20 disks or less. To check that 

this method of presenting data is fair, we verify that throughput per disk remains constant as we scale up 

the number of disks used (see section 10.3). This second method of combining throughput and cost is the 

one used in this paper. 

Although throughput scales with the number of disks used, response time does not Unless otherwise 

mentioned, response time in this paper is defined as the time in which 90% of the requests in the run were 

serviced, similar to [Anon 85]. For example, a response time of 1 second would mean that 90% of all 

requests in that run returned to the user within 1 second. To maintain a valid comparison between RAID 

Levels, we vary the rate of requests and force different RAID Levels to have the same response times. 

With this equal response time, we then compare the throughput of the different RAID Levels. 

In summary, we compare different RAID Levels by: 

(1) maintaining equal user data capacity to simplify the equalization of workloads 

(2) forcing comparable response time for all RAID Levels 

(3) measuring throughput and dividing by the number of disks involved to get throughput per disk as 

the main performance metric. 

5.3. Two Entire Systems 

As a final note, another approach to comparing RAID Levels is possible. We show this option in 

Figure 3. This approach is easiest to explain for comparing RAID Level 0 and 1, but it also generalizes to 

RAID Level 5. 

Consider a system with D disks and one CPU. Conceptually, we will form a RAID Levell with two 

such systems, systems A and B. Each system in the RAID Level 1 will contain half the data disks along 

with their corresponding shadow disks. Requests to the RAID Level 1 as a whole will be serviced in part 

by each of the two systems. Requests that span more than one disk will be broken up and serviced in part 
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logical request block 

dW:O diU 1 diU 2 dW:3 dW:O diU 1 dW:3 
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T T T T 
sh&dowpair shadow pair shadow pair shadow pair 

System A ~,_. B 

Figure 3: Alternate Way to Compare RAID Levels. This figure shows a way to map RAID Level 1 onto 
two distinct systems A and B. Even numbered logical blocks are stored in System A; odd numbered logi­
cal blocks are stored in System B. Each system will receive exactly half the total workload. Thus, to esti­
mate total throughput, we need only measure the throughput of one of the systems. This has the advantage 
of needing only half the disk and CPU resources. Also, the system that we measure will have the same 
CPU resources per disk as a RAID Level 0. 

by system A and in part by system B. Similarly, half the requests that need only one disk will be serviced 

by system A and half will be serviced by system B. The key to this method is that each system will see an 

identical load. Because of this, we need only measure the throughput of one of these systems and multiply 

by two to calculate the throughput of the entire RAID Level 1. Note that the conceptual system has double 

the entire hardware configuration of a corresponding RAID Level 0 system, not just double the number of 

disks. Because of this, the cost of the resulting RAID Level 1 is exactly double the cost of the correspond-

ing RAID Level 0 and dividing the resulting calculated RAID Level 1 throughput by two will always yield 

a fair throughput per cost figure. 

This method, though superior in comparing throughput per cost, does not accurately model response 

time. We could assume response time is the same on both halves, as they do the same work. However, 

this ignores unsynchronized disks. Because of this difficulty in measuring response time, we choose to use 
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the previous method (constant number of data disks). 

6. Experiment Implementation 

Experiments were run on an Amdahl mainframe under UTS, which is a version of System V Unix. 

See Table 1 and Figure 4 for hardware statistics and channel architecture. Note that we have only one disk 

per string. This prevents channel conflicts and approximates a system which uses buffers to avoid data 

transfer conflicts. 

By using synthetic workloads instead of application software, we eliminate the need for a file system 

structure. Instead, we simply read and write bytes on the disks. This enables us to simulate a large range 

of 1/0 access patterns without dealing with the logistics of many benchmarks. In our experiment, the reads 

and writes are done by user processes accessing raw devices [UTS 88]. 

6.1. Process Structure 

The simplest structure to produce a synthetic workload would be a single process issuing all 1/0' s. 

However, because UTS does not support asynchronous 1/0, it is impossible to have more than one out-

standing 1/0 per process. Thus, at the start of each experiment, one master process (the parent) creates one 

child process for each disk. This child process will be used as a user-level device driver and will drive one 

disk. All communication is done via IPC messages between the parent process and an individual child 

Processor Resources: Amdahl 5890-300e Disk Resources: Amdahl 6380 
processors 2 cylinders/disk 885 
cycle time 15 ns tracks/cylinder 15 
memory size 256MB sectors/track 10 
data cache 64KB bytes/sector (fixed format) 4KB 
instruction cache 32KB average seek ISms 
channels 64 average rotational latency 8.3 ms 

maximum transfer rate 2.4MB/s 
disk caching off 

Table 1: Hardware Statistics of Processor and Disk Resources [Amdahl6380, Amdahl5890]. We assume rotation­
al latency is distributed uniformly between 0 and 16.7 ms. We also assume seeks are distributed uniformly between 8 
ms and 27 ms, an approximation of the seek time data in [Thisquen 88]. 

I 
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bus 
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Figure 4: Disk • Memory Bus Architecture. This figure shows how the disks are connected to the 
memory bus in most of our experiments [Buzen 86]. Note that we use only one disk per channel path (path 
to memory}. This avoids channel conflicts and RPS misses. 

process--there is no communication between child processes. The child process has no concept of RAID 

Levek Rather, the parent is responsible for generating the logical request, mapping the logical request 

into a number of physical requests, and passing the physical requests to the children. The children see sim-

ply a stream of disk accesses of the form: read/write, location on disk, size of access. 

Each child process has a queue of requests, and waits until there is a request in its queue to carry out 

that request on its assigned disk (using UNIX read or write}. When the request returns, the child will 

inform the parent of its return and process the next request in its queue. Note that no actual data passes 

between the parent and the child. All data is read into a garbage buffer and thrown away by the child. 

Data to be written also comes from a garbage buffer. 

6.2. RAID Level 0 

For a non-redundant array, individual logical reads and writes each result in a single disk access. 

Because there is no read buffering on the disks we are using, physical reads and physical writes have the 
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Figure S: Parent - Child Communication Structure. This figure shows how the parent process com­municates with the child processes to issue and return disk accesses. The parent (master) process asynchro­nously issues disk commands to a queue for each child process, which act as user-level device drivers. In turn, the child processes synchronously issue commands to a disk. 

same disk service time. Consequently, in this experiment, we assume performance for RAID Level 0 is 
independent of the percentage of reads and writes. 

6.3. RAID Levell 

To execute a mirrored read of a data block, the system must decide if the data disk or tlte shadow 
disk will carry out the access. In our experiment, we first look for a disk which is idle. If both disks are 

idle or both are busy, we choose the disk which will yield the shorter seek. To make this choice, we save 
the location of the previous request to that physical disk. 

A possible optimization which do not make is to have a read serviced in part by a data disk and in 
part by a shadow disk. This implementation would increase throughput if the system was fairly idle, since 

it would make better use of both copies of each datum. However, it would decrease throughput for a 



-14-

loaded system, since each disk would transferring less data per seek. 

6.4. RAID Level 5 

A RAlD Level 5 write must update both the data blocks and the parity associated with those data 

blocks. Because a full stripe write will write an entire stripe, it involves all the data needed to compute par­

ity, and no additional information needs to be read. 

For partial stripe writes, two interesting implementation questions arise. First, which disks should 

we read to compute parity? One choice is to read the current data and current parity, compare the current 

data and new data, and change the parity correspondingly. When writing D disks of data out of N total 

disks, this choice results in D+1 disk reads to compute parity. The second choice is to read the data in the 

rest of the stripe and simply recompute parity of the stripe. This results in N-D-1 disk reads to compute 

parity. In our experiment, we choose the option that requires the fewest disk accesses. Partial stripes 

requests can range in size from 1 disk to N-2 disks. For an individual request, we read the current data and 

the current parity. This leads to a relative throughput of 25%. For a partial stripe write of N-2 disks, we 

read the remaining data disk and write the N-2 original data disks plus parity. This leads to a relative 

throughput of J!..if- (N disks need to be accessed in RAID Level5 relative to N-2 disks in RAID Level 0). 

Second, if we choose to read the current data and current parity, how do we schedule the new data 

and new parity writes? The new data can be written immediately after the current data has been read. This 

new data write will see a zero seek plus a full rotation. We assume the kernel can do the exclusive-ors 

necessary to compute the new parity block in the time the disk rotates once. Thus, we write the new parity 

block out one rotation after the current parity block has been read (exactly the same as the data block). 

This is a simplifying assumption, as the current data may not have been read yet. We believe this assump­

tion is valid, as the device driver could simply delay the parity block read and write until the data block is 

about to be read. Because a request is not considered complete until all accesses related to that request 

have finished, such a minor scheduling delay would only marginally affect response time and should not 

affect throughput at all. 
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6.5. Response Time Control and Stabilization 

To achieve a certain target response time, we control the nwnber of outstanding logical requests in 

the system (queue depth). We periodically check the number of requests that were satisfied within the tar­

get response time, and adjust the allowed nwnber of outstanding logical requests accordingly. To avoid 

including the start up time in the performance analysis, we discard statistics gathered before the queue 

depth has stabilized. Queue depth stabilization in this context means being checkpointed at the same value 

more than twice. Once the queue depth has stabilized we begin collecting data. The throughput for the run 

is collected every 20 seconds. The run has stabilized when two conditions are met 

(1) The previous two throughput reports are within 1% of the current throughput report 

(2) 90%±1% of all requests have been fulfilled within the target response time. 

Once the run has stabilized, we cease sending new requests and await the completion of any outstanding 

requests. While we await the completion of all requests, throughput will drop, though not enough to 

sigoificantly affect the overall performance. 

6.6. Synthetic Workload Implementation 

The parameters of the synthetic workload are response time target, read/write ratio, request size dis­

tribution, and data distribution. When the parent process generates a request, it stochastically chooses read 

or write, request size, and starting location of the data. Each choice is made independently of past choices. 

Note that these parameters determine the logical request stream and are independent of the RAID organiza­

tion (the logical to physical mapping). 

The request size is generated in a nwnber of different ways, depending on the workload. One 

method is to force all accesses for a run to be a fixed size. This is the assumption used in the simple model, 

for example, 100% full stripe requests. A second method is to choose a distribution of request sizes. We 

choose two distributions in particular: exponentials with small means and normals with large means and 

standard deviations. Once we choose the request size, we choose the placement of this data according to 

the data distribution. 

Because there is no file system structure, we choose the data distribution by choosing the starting 

location of the logical request. In our workload, we break the starting location into two orthogonal 
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components: starting clisk and stripe number on that disk. The starting stripe number on the disk is always 

clistributed uniformly over all stripes on that clisk. 

We used several methods for choosing the starting disk. We call the first method uniform alignment. 

This is intended to be the data distribution which yields optimal performance. Uniform alignment tries to 

I) minimize the number of partial stripes, and 2) spread the 1/0 load evenly across disks. It minimizes the 

number of partial stripes by aligning data on full stripe boundaries where possible. For request sizes 

smaller than a full stripe, it chooses the starting disk according to a uniform distribution. 

The second method of choosing the starting disk is derived from a normal distribution (Figure 6). In 

our tests, the standard deviation (in disks) of our normal distribution equals the number of data disks. We 

refer to this data distribution as the skewed distribution. 

probability of 

being the 

starting disk ' 
'!{i 

* 
'· '---

' 
' 

" 
- '--- -

Figure 6: Using the Skewed Data Distribution to Select the Starting Disk. The distribution of data 
accesses is determined by both starting disk and stripe number on that disk. The choice of starting stripe is 
always distributed uniformly over all stripes. Starting disk is chosen according to various distributions. 
The distribution shown here, the skewed data distribution, is the truncated right half of a normal distribu­
tion with a standard deviation of 10 disks. 
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7. Result Presentation 

The simple model analyzed performance under four types of workloads: large reads, large writes, 
small reads, and small writes. While continuing to direct our experiments toward understanding these four 
types of workloads, we seek to make them more realistic as discussed in Section 4. Rather than jump from 

the analysis presented in the RAID paper directly to our most realistic workload, we make the transition in 

a number of smaller steps. These steps are summarized in Table 2. 

We start by running the same workload as the RAID paper: request sizes are full stripe or individual; 
requests are all reads or all writes. In Section 8.1, we analyze an idle system to break down the time for a 
basic 1/0. Next, in Section 8.2, we attempt to duplicate the assumptions made in the RAID paper of unlim-

ited response time by analyzing a saturated system. In 8.3, we make the experiment more realistic by con-

trolling and equalizing the response times. 

When we have finished analyzing the RAID paper workload, we begin to u~ more varied work­
loads. We again make this transition by changing one aspect of the workload at a time. In 9.1, we remove 

the assumption of constant request size by using a distribution of request sizes. In 9.2, we skew the data 
distribution. As our last step in making the experiment more realistic, we allow workloads with both reads 

and writes. 

Section Description Response Request Data Read Write 
Time Size Distribution Mixture 8.1 Breaking down a basic request minimum fixed uniform aligned unmixed 8.2 Unlimited response time unlimited fixed uniform aligned munixed 8.3 Set target response time target fixed uniform aligned unmixed 9.1 Distribute request sizes target distributed uniform aligned unmixed 9.2 Skewed data distribution target distributed skewed unmixed 

9.3 Mix reads and writes target distributed skewed mixed 

Table 2: Stages or Results. A guide to the results in Sections 8 and 9. The workload becomes more real­istic with each succeeding stage. In Sections 8.1-8.3, we concentrate on the response time target In Sec­tions 9.1-9.3, we change the request size, data distribution, and read/write ratio. 
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Lastly, we explore several additional issues, such as further varying the request sizes, comparing sec­

tor and track interleaving, and scaling the number of data disks. As a final caveat we look briefly at the 

effects of connecting multiple disks per channel. 

Unless otherwise noted, experiments are run with 10 data disks and track striping. Thus, a full stripe 

is 10 tracks (400 KB) and an individual request is 1 track (40 KB). 

8. The RAlD Paper Workload 

Request sizes in the RAID paper workload are large (a full stripe) or small (individual). Runs are 

either 100% reads or 100% writes. With the RAID paper assumption of infinite workload, disks are always 

100% utilized, and data distribution has no effect. To approximate this, we usc a very high workload and 

the uniform aligned data distribution. 

8.1. Analyzing an Idle System 

To understand the supporting hardware, we first break down the time of a basic l/0. This is done by 

analyzing the average response time of a single request in an idle system. Average response time is not the 

90% response time used in the majority of this paper, but rather the arithmetic average of all response 

times. We trace the lifetime of an average request by measuring the time spent in various stages of servic­

ing the request (Figure 7). We also measure the total average response time of the requests and check that 

this is equal to the sum of the times spent in each stage. In all cases, the average response time is within I 

ms of the sum of the time spent in each stage. 

Average response time breaks down as follows: 

• request overhead: CPU time spent in sending messages between parent process and child processes. 

• IO CPU time: CPU time for children to i>Sue and receive I/O's, including the channel processing time. 

!0 CPU time ranges from 1.5 ms to 1.8 ms. 

• disconnect time: time spent in seek and rotational latency. An average seek is 15 ms and the average 

rotational latency is 8.3 ms. 

• synchronization: additional time due to multiple independent disks doing random seeks and rotations. 

This is not measured, but rather calculated (more in the next section) based on statistics given in Section 

6. 
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• connect time: time spent in transferring data [IBM 87]. For full track data transfers, connect time is 

16.2 ms. 

Note that request overhead is measured per logical request. IO CPU time, disconnect time, pending time, 
and connect time are all measured per disk access. 

8.1.1. Synchronizing Multiple Disks 

There are two types of synchronization between multiple disks. In most cases, such as RAID Level 
0 full stripe reads or writes and RAID Level 1 individual writes, only rotations need to be synchronized. 
Seek distance among disks that cooperate in a request are usually the same--the sole exception being RAID 
Level S small writes. Because workloads are homogeneous, disks that cooperate in any request cooperate 
for all requests. For example, for RAID Level 1 individual writes, each data or shadow disk pair always 
seek to the same track. Thus, for RAID Level 0 full stripe reads or writes, RAID Level 1 full stripe reads 
or writes and individual writes, and RAID LevelS full stripe reads or writes, multipltfrotations lengthen the 
total request time in proportion to the number of disks involved. Synchronizing N multiple rotations is 
equivalent to taking the maximum of N uniform random variables distributed between 0 and 16.7 ms. The 

expected value of such a distribution is J"-r 1 x16. 7 ms. The difference between this expected value and 

the average rotational latency of one disk (8.3 ms) is the penalty for synchronizing multiple rotations. 

The second type of synchronization, synchronizing both seeks and rotations, is relevant only for 
RAID LevelS individual writes, and is discussed in Section 8.1.4. 

8.1.2. Request Overhead 

Request overhead changes drastically with the number of disks involved in a request. Far example, 
for RAID Level 0, request overhead jumps from .7 ms for individual reads/writes to 10.9 ms for full stripe 
reads/writes. This drastic increase is a side effect of running on an idle system. Under normal loads, most 
of this overhead is overlapped with queuing time and does not noticeably affect performance. In an idle 
system, when the first of multiple messages is passed from the parent process to a child process, themes­
sage is immediately received and acted upon by the child (since the system is idle). As that child processes 
the I/0 request it has just received, it contends for the CPU with the parent process, which is trying to send 
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Figure 7: Lifetime of Requests. The lifetime of each type of request is traced by measuring the time 
spent in various stages of servicing the request: request overhead, 10 CPU time, disconnect, synchroniza­
tion, and connect. 
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out the other 9 requests. Thus, while sending out multiple messages, the parent process often has to wait 

through multiple context switches, as the child processes receive and act upon their messages. In contrast, 

in a non-idle system, most messages from the parent to the child processes are not acted upon immediately 

by the children (since they are usually in waiting for a previous 1/0). As a result, the parent can finish 

sending the messages to the children in a short amount of time. For example, for full stripe requests to a 

non-idle system, the request overhead is approximately 3.5 ms per logical request. 

Request overhead also increases with the number of total disks in the system. This is due to the 

increased message passing overhead with more message passing channels. In general, this effect is much 

less pronounced on a non-idle system. However, it is true that RAID Levell's 20 disks require more CPU 

power than RAID Level O's 10 disks. By limiting the experiments to 20 disks as discussed in Section 5.2, 

we prevent this increased CPU demand from unfairly penalizing the throughput per disk: of RAID Levell. 

8.1.3. Seek Optimization 

RAID Level I reads are almost identical to RAID Level 0 reads. A key difference, however, is the 

disconnect time. The disconnect time of RAID Level I is shorter because RAID Level I requests can 

choose between two disks which have the same data. By choosing the copy of the data which results in the 

shorter seek time, the average disconnect time drops 3-4 ms from RAID Level 0. [Bitton 88] 

8.1.4. RAID Level 5 Individual Writes 

The RAID paper assumed that a RAID Level 5 individual write was four equal disk accesses. 

Because the four disk accesses are issued to two disks, each disk sees a pair of requests: first a read of the 

current data or parity, then a write of the new data or parity. The lifetime shown in Figure 7 focuses on one 
of these disks, say the data disk. Note the two distinct disk accesses in the broken out trace of RAID Level 

5 individual writes in Figure 7. For the first disk access (the read), we need to add synchronization because 

we are using two independent disks. However, RAID Level 5 individual writes are unique in that two 

disks that cooperate in one request do not necessarily cooperate in the next request Thus, they could have 

different current head positions. Because of this, we need to synchronize not only different rotations, but 

also different seek distances. Just as we synchronized multiple rotations by taking their maximum, we syn­

chronize multiple seek + rotations by taking the maximum of a number of random variables, each 
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distributed as a seek + rotation. This adds approximately 3.6 ms to an average seek plus an average rota­

tion. 

For the second disk access (the write), no seek is needed. Because the disk has just finished reading 

the old data, the new data can be written without moving the disk head. However, we do see a full rotation 

instead of an average rotation. Thus, we save an average seek (15 ms) but pay an extra half rotation (8.3 

ms). We refer to this as RAID LevelS saving a seek. 

8.2. Analyzing a Saturated System 

As discussed in Section 6.5, we control the system load by controlling the number of outstanding 

logical request in the system. Increasing the target response time allows the system to have more outstand­

ing logical requests at a time. This causes higher disk utilization and correspondingly higher throughput. 

By varying the load, we can graph absolute throughput per disk versus response time. Figures 8 show 

these graphs for the RAID paper workloads: large reads, large writes, small reads, and small writes. As 

before, large means a full stripe; small means an individual request. 

Note that the minimum response times are those discussed in Section 8.L As expected, when we 

allow requests to have longer service times, we see higher throughput. Eventually, when the disks are fully 

utilized, increasing the response time no longer increases the throughput The RAID paper analysis deals 

with this point of maximum throughput. By presenting RAID Levels 1 and 5's maximum throughput per 

disk relative to RAID Level O's, we can make a direct comparison to the performance predicted in the 

RAID paper (Figure 9). 

Figure 9 shows that, for most workloads, the simple model in the RAID paper accurately predict~ the 

actual performance of real hardware. However, there are significant differences. 

In RAID Level I, relative throughput for reads is higher than predicted by our simple model. Recall 

that the simple model assumed all ilisk accesses took a constant amount of time. Because of seek optimiza­

tion, this assumption is no longer valid. We adjust the simple model by defining relative throughput as the 

total disk-time used by a RAID Level 0 logical request divided by the total disk-time used by the RAID 

Level in question. When seen in this light, we can easily adjust for different access times. Due to seek 

optimization, the disk-time for RAID Level 1 reads is 4 ms per disk less than RAID Level 0. This 



Throughput 

'""li"' (MBt./<Dsk) 

Throughput 
per disk 
(MB/s/disk) 

-23-

+ -- RNDLeveiO c -- RAID Levell 

!.4 

!.2 

!.0 

~----+,0 
0.8 

0.6 

0.4 a-s--·-----.£Jrl 
;s 

yJ . __ _.,&.-------o•,5 
02 v 
o.o 

0 500 1000 1500 

Response Time (nu) 

(a) individual writes 

1.4 •••••••••••••••••••••••••••••••••••••••••••••u••••••••••• ••••••; 

!.2 

!.0 

o.s 

0.6 

jir- -EI----- -£Jrl 
0.4 

0.2 

0.0 
0 100 200 300 

Response Time (ms) 

(c) full stripe writes 

t. - RND Leve15 

1.4 ·•····· .••.•.•..••••••••••••••••••••••••••••...••.•••....•.••..• , 

!.2 

!.0 a--s------Dr1 
... rl) 

" 0.8 

0.6 

0.4 

0.2 l 
o.o-1--------.-----.------i 

0 500 1000 1500 

Response Time (ms) 

(b) individual reads 

1.4 ••• .................... u ••••••••••••••••••••• ··-·· ••••••••••••• , 

!.2 

!.0 ..a-------Eir1j 

a e Ar5j 

0.8 

0.6 

0.4 

0.2 

o.o,-1------.-----.-------i 
0 100 200 300 

Response Time (ms) 

(d) full stripe reads 

Figure 8: Throughput vs. Response Time. Throughput is graphed as a function of response time target 
for 4 types of l/0 requests: individual reads and writes, full stripe reads and writes. These graphs were 
generated by keeping a fixed number of logical requests in the queue and measuring the resulting 
throughput and response time. The data distribution used here is uniform aligned. 
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Figure 9: Comparing Maximum Throughput Against Simple Model. The measured maximum 
throughput per disk relative to RAJD Level 0 is compared against the estimates made in the RAJD paper 
[Patterson 88]. The only significant differences occur for RAlD Level I reads, due to seek optimization, 
and RAJD Level 5 individual writes, due to saving a seek. 

represents approximately 10% of the total disk-time, so the adjusted simple model predicts a relative 

throughput of 110% for RAID Level 1. The measured relative throughput is close to this prediction, rang-

ing from 112% - 115%. 

A RAJD Level 5 small write causes two disks to perform a seek, an average rotation, a full track 

transfer, a full rotation, and a second full track transfer (total 72 ms). Applying the adjusted model to 

RAID Level 5 small writes, a the total disk-time is approximately 72*2 = 144 disk-ms. The total disk-time 

for RAJD Level 0 small writes is approximately 40. Thus, while the simple model predicts a relative 

throughput of 25%, the adjusted simple model predicts a relative throughput of 40/144 = 28%. This agrees 

with the measured performance. 
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8.3. Maintaining Equal Response Times 

Section 8.2 compared the maximum throughputs of different RAID Levels. However, the different 

RAID Levels reach maximum throughput at different response times. It is unfair to compare RAID Levels 

with different target response times. By forcing all RAID Levels to have equivalent response times, we 

generate a fairer comparison. Figure 8 showed that throughput for all RAID Levels drops as the response 

time target decreases. To better understand how throughput changes for each RAID Level, we graph 

throughput per disk versus response time in a slightly different way. Instead of absolute throughput per 

disk, we graph the percentage of each RAID Level's maximum throughput. For example, since RAID 

Level O's maximum throughput per disk is .906 MB/s/disk for small writes, RAID Level 0 throughput is 

graphed as a percentage of .906 MB/s/disk in Figures lOa. RAID Level 1 's maximum throughput per disk 

for small writes is .438 MB/s, so throughput per disk is graphed as a percentage of .438 MB/s in Figure 

lOa 

These response time behavior figures show us what to expect when we maintain equal response 

times for each RAID Level. For example, in Figure lOa, we see that at any response time less than 1000 

ms, RAID Level 5 achieves a lower percentage of its maximum throughput than RAID Level 0. This is 

due to RAID Level 5 small writes having long response times as discussed in Section 8.1.4. Thus, RAID 

Level 5's relative throughput (relative to RAID Level 0) for small writes will decrease. In contrast, RAID 

Level 1 small writes track RAID Level 0 small writes very closely at all response times. Thus we expect 

RAID Levell small writes to maintain the same relative throughput 

In the remainder of this paper, we choose one specific response time for each workload. Our method 

for choosing that response time is somewhat arbitrary. We first measure the minimum respon_se time of a 

RAID Level 0 (as in the idle system in Section 8.1) running a particular workload. The target response 

time for that workload is then set at four times that minimum response time. To summarize, if 90% of all 

requests on an idle RAID Level 0 return in time t, we control the response time such that 90% of all 

requests return in time 4*t. For full stripe requests, target response time is 268 ms; for individual requests, 

target response time is 200 ms. This is intended to allow some freedom to queue requests in order to 

achieve higher throughput, but not to allow queues to grow too deep. Notice that four times the idle RAID 
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Figure 10: Percentage of Maximum Throughput. Throughput per disk for each RAID Level is shown 

as a percentage of the maximum throughput per disk for that RAID LeveL Thus, we can see the relative 

effects of changing the response time target. For example, in Figure lOa, RAID Level 5 achieves a lower 

percentage of its maximum throughput than either RAID Level 0 or 1. Data distribution is uniform 

aligned. 
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Figure 11: Before and After Equalizing Response Times. Throughput per disk relative to RAID Level 0 
is shown before and after maintaining equal response times. We see that equalizing to our target response 
times affects relative throughput for RAID Level 1 individual reads and RAID Level 5 individual writes. 

Level 0 response time for large requests easily exceeds the response time needed to achieve maximum 

throughput. An interesting future experiment would be to restrict large requests to a small percent over the 

minimum response time. 

Figure 11 shows the relative throughput per disk of RAID Levels 1 and 5 before and after equalizing 

to these target response times. Note that at the particular response times we chose, only two workloads 

show significant change relative to RAID Level 0: RAID Level 5 small writes and RAID Level 1 small 

reads. We discussed previously how the throughput for RAID Level 5 small writes changed as we main-

tained equal response times. Similarly, Figure lOb shows that, at our 200 ms target response time, RAID 

Level 1 has is at a slightly higher percentage of its maximum throughput 



-28-

This section has focused on response times. We have seen that limiting response times causes less 

than maximum throughput for all RAID Levels. In general, RAID Levels with longer response times are 

penalized more than RAID Levels with shorter response times. 

9. More Realistic Workloads 

In Section 8, we analyzed the RAID paper workload of full stripe or individual requests, 100% reads 

or 100% writes. We started by analyzing idle systems (minimum response time) and saturated systems 

(maximum throughput). We finished by analyzing systems with equivalent response times. While still 

maintaining equivalent response times, we now begin modifying the actual workload: request size, data 

distribution, and read/write ratio. 

9.1. Distributing Request Sizes 

A key characteristic of any workload is the logical requests sizes. Until now, large requests have 

been full stripe requests and small requests have been individual requests. Thus, with 10 disks and track­

level striping, large requests have been exactly 400 KB and individual requests have been exactly 40 KB. 

However, in real-world systems, large requests are often much larger than 400 KB [Bucher 80] and small 

requests are often much smaller than 40 KB [Ousterhout 85, Anon 85]. Also, applications rarely issue 

requests that are all the same size. Rather, they issue requests of various sizes. We therefore make two 

changes to the request size distribution: 

(I) We no longer restrict the workloads to one particular size. Rather, we use a distribution of request 

sizes. For large requests, we generate request sizes derived from a normal distribution; for small 

requests, we generate request sizes based on an exponential distribution. 

(2) We change the average size of both large and small requests: an average large request changes 

from 400 KB to 1.5MB (approximately 4 stripes); an average small request changes from 40 KB to 

6 KB, the closest we could come to one 4KB sector. 

Thus, the large requests get larger and the small requests. get smaller. This significant change will 

alter many of our results; qualitatively, however, what we have learned so far will still hold. Seek optimi­

zation will continue to benefit RAID Level 1 reads; RAID Level 5 small writes will still save a seek. 

Changes to our target re,ponse times will follow the changes in RAID Level 0 minimum response times 



200% 

150% 
%of 

lbroughput before 
Distributing 

Request sizes 
100% 

50% 

0% 

-29-

175~ 175~ ,.,.. 
... ·~ 
m.~ 

0 1 5 
R r 

Before distributing request sizes 

[] RAID Level 0 

~ RAID Level 1 

EJ RAID Level5 

w 

R,W: request size = full stripe = 400 KB 
r, w: request size = individual = 40 KB 

After distributing request sizes 
R,W: request size= normal distribution, mean 1.5MB 
r, w: request size = exponential, mean 6 KB 

Figure 12: Effect on Absolute Throughput Of Changing Request Sizes. Throughput after distributing 
request sizes is shown as a percentage of the throughput before distributing request sizes. Throughput for 
large requests improved to about 160%; throughput for small requests decreased to about 25% of the undis­
tributed request sizes. 

(new response time target for large requests will be 780 ms; new response time target for small requests 

will be 148 ms). 

Because large requests using our new size distributions will usually cover multiple stripes, each disk 

transfers more information per seek than before and absolute throughput will increase for all RAID Levels. 

In contrast, because small requests are smaller on average, less data is transferred per seek and absolute 

throughput for small requests will decrease for all RAID Levels. These trends in absolute throughput are 

shown in Figure 12, which shows throughput after distributing request sizes as a percentage of the 

throughput before distributing request sizes. 
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The same general trends hold for all RAID Levels: throughput increases for large requests and 

decreases for small requests. However, there is some variation in how much each RAID Level changes. 

To better picture how the performance of RAID Levels 1 and 5 change relative to RAID Level 0, we plot 

the new relative throughput per disk. We show the relative throughput before and after we distribute and 

change the means of the request sizes. The following four subsections discuss these results, shown in Fig-

ure 13. 
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Figure 13: Relative Throughput Before and After Changing Request Sizes. In this figure, we see how 

the throughput of RAID Levels I and 5 change relative to RAID Level 0 as request sizes are distributed. 

Distributing the request sizes decreased the relative throughput per disk for RAID Level 1 large reads due 

to the lessening importance of seek optimization. RAID Level 5 large reads decreased in relative 

throughput due to reading the parity tracks. RAID Level 5 large writes decreased in relative throughput 

due to the presence of partial stripe writes. RAID Level 5 small writes increased in relative throughput due 

to a different response time target. Data distribution is uniform aligned. 
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9.1.1. RAID Levell 

With larger requests, each disk access takes longer. Because of this, savings due to seek optimiza­

tion are a smaller fraction of the access time of each disk. Thus, RAID Level 1 large reads, which benefit 

from seek optimization, show less performance advantage over RAID Level 0. However, we do expect 

RAID Level 1 to still have slightly higher throughput per disk than RAID Level 0. Unfortunately, the 

request overhead for RAID Level 1 is 3-4 ms higher than for RAID Level 0. This cancels out the slight 

performance advantage of seek optimization, and makes RAID Level 1 throughput for large reads equal to 

RAID Level 0. 

With the other workloads, large writes, small reads, and small writes, the relative throughput of 

RAID Level 1 turns out to be the same. 

9.1.2. RAID Level 5 Small Writes 

As shown in Figure 13, RAID Level 5 small writes improve in relative throughput per disk. Two 

factors combine to cause this improvement: 

First, by saving a seek on the data and parity write, we save a fixed amount of time. With smaller 

requests, the total request time is shoner and this seek savings is a slightly larger fraction of the entire 

request time. This larger seek savings accounts for I% of the 6% change we see in Figure 13. 

Most of the improved relative throughput is due to selecting a response time target which is more 

favorable for RAID Level 5 small writes than the response time target for undistributed request sizes. Fig­

ure 14 is similar to Figure lOa characterizing the throughput/response-time profile for small writes. In Fig­

ure lOa, throughput at the target response time (200 ms) was at 59% of maximum throughput for RAID 

Level 5 and 81% for RAID Level 0. In Figure 14, throughput at the target response time (148 ms) remains 

roughly the same for RAID Level 0 (85%); However, RAID Level 5 at this response time is closer to its 

maximum throughput (72%) than before. As a result, RAID LevelS's relative throughput is higher than in 

Section 8.3. 
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Figure 14: Percent of Maximum Throughput for Small Writes. Similar to Figure 10, throughput per 
disk for each RAID Level is shown as a percentage of the maximum throughput per disk for that RAID 
Level. Size distribution is exponential with a mean of 6 KB. Note that the target response time of 148 ms 
is more favorable for RAID Level 5 than the target response time in Figure lOa. Data distribution is uni­
form aligned. 

9.1.3. RAID Level 5 Large Reads 

For full stripe reads, the relative throughput of RAID Level 5 was 100%. This result was expected, 

as no extra redundant information needed to be read in, and the number of disk accesses in the physical 

request equaled the number of disk accesses in the logical request. However, now that requests cover mul-

tiple stripes, we can no longer simply read the data and ignore parity. For example, in Figure 1b, if the log-

ical request reads logical tracks 0-13, disk 1 must read its physical tracks 0, 2, and 3. Because the experi-

mentis run in user-level, we do not have control of the channel program. Rather, because physical tracks 

0, 2, and 3 are not contiguous, we must issue two separate I/O's to disk I. First, read physical track 0. 

Second, read physical track 2-3. Unfortunately, by the time the child process is able to complete the first 

l/0 and issue the second l/0, the disk has rotated enough to miss the start of track 2. Thus, issuing two 



-33-

I/O's in order to skip over the parity track costs a full rotation, the same as simply reading the parity track 

and issuing one large 1/0. 

An average size (4 full stripes, or 40 tracks) request will need to skip over two parity tracks. The 

overhead, then, is 2/40 or 5%. This accounts for the 5% drop in throughput shown in Figure 13. 

With tighter control of the channel program, we could build one channel program to issue multiple 

I/O's. This would save on turnaround time between the two I/O's and prevent the missed revolution. 

Another solution is to map the data such that the first data sector on a track after a parity track starts several 

sectors past the previous data sector. 

9.1.4. RAID Level S Large Writes 

For writes which exactly cover a number of full stripes, performance is straightforward. To maintain 

the parity information, one parity track must be written for every 10 data tracks. Full stripe writes do not 

need to read any infonnation. However, when request sizes become distributed, most requests will not 

cover an exact number of full stripes. Usually, one or both ends of the request will be a partial stripe. For 

example, in Figure 1b, if a logical request covers logical tracks 0-13, stripes 0, 1, and 2 are full stripe writes 

but stripe 3 is only partially written (logical tracks 12 and 13). Thus, although stripes 0-2 act as full stripe 

writes with relative throughput ¥' stripe 3 acts as a partial stripe write. As discussed in Section 6.4, 

partial stripe writes can have relative performance ranging from 25% to !J.#. 
In this section, we allow at most one partial stripe per request This is done by using the uniform 

aligned data distribution (see Section 6.6). With this data distribution, requests larger than one full stripe 

are forced to either begin or end at a full stripe boundary. Introducing one partial stripe per request causes 

the relative throughput of RAID Level 5 large writes to drop from 90% to 80%. When we use data distri­

butions other than uniform aligned (as in the following section), we see up to two partial stripes per 

request, and a correspondingly higher drop in relative throughput 

9.2. Varying the Data Distribution 

Because we interleave data across disks in fixed units, hot spots tend to be spread among several 

disks and naturally smoothed out. Realistically, however, some disks will still receive more requests than 
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Figure 15: Change in Absolute Throughput After Skewing Data Distribution. Throughput after skew­ing the data distribution is shown as a percentage of the throughput before skewing the data distribution. Note that skewing the data distribution has little effect on throughput for large requests, whereas throughput for small requests decreases by approximately 10%. 

others. In this section, we remove the assumption of uniform disk utilization by using a skewed data distri-

bution. We continue to maintain equal response times. We also continue to use the most recent definitions 

of large and small requests (large is defined to be a normal distribution of request sizes with a mean of 1.5 

MB; small is defined to be an exponential distribution of request sizes with a mean of 6 KB). 

As discussed in Section 6.6, skewing the data distribution reduces to choosing the starting location 

(starting logical disk and starting stripe) of the logical request The starting logical disk and the starting 

stripe on that disk are chosen independently. In a skewed distribution, the starting disk is chosen according 

to a normal, with standard deviation equal to the number of data disks (Figure 6). The starting stripe is 

always chosen according to a uniform distribution across all snipes. 
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Figure 15 shows the throughput after skewing the data distribution as a percentage of the throughput 

before skewing the data distribution. For all workloads, skewing the data distribution causes the absolute 

throughput to decrease. In most cases, the throughput for large requests only decreases a few percent. 

Because large requests cover multiple stripes, choosing the starting disk of the request generally has little 

effect on overall throughput. An exception to this is RAID Level 5 large writes (discussed below), whose 

throughput decreases more than RAID Levels 0 or I. Small requests show a larger (10%) decrease in 

throughput. An exception is again RAID Level 5, whose throughput decreases only slightly. 

100% 

Throughput/Disk 
Relative to 

RAID Leve!O 

75% 

50% 

25% 

0% 

123% 0 lmSkewed data distribution '1 ""' 
~ skewed data distribution 

.... 105 
,. .. 1 !"" """' r · .. ~94 "" 

•• ... I 

ID 
.. 

I ·.·. 

• .. I 
.. 

1-

'"" -r I I ... 
.·· 

• . •. I ' ~ I •• 2S% 26% .. 
I ..• 

I 

N 
'-'- I 

~ 

R r w w R r w w 
RAID Levell RAID LevelS 

R,W: request size= normal distribution, mean 1.5MB 

r,w: request size= exponential, mean 6 KB 

Figure 16: Relative Throughput Before and After Skewing the Data Distribution. This graph shows the effect of skewing the data distribution on relative throughput. The data distribution was changed from uniform aligned to skewed. RAID Level 5 small reads improved slightly due to the location of the parity tracks. RAID Level 5 large writes degraded due to additional partial stripe writes. 
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RAID Level 5 large write throughput decreases significantly because of additional partial stripe 

writes. When distributing the request sizes, a number of partial stripe writes were introduced. Using the 

uniform aligned data distribution, each request had at most one partial stripe. Now, with the skewed data 

distribution, no attempt is made to align the request on a full stripe boundary. Thus, up to two partial stripe 

writes can occur per request and throughput decreases accordingly. 

For small requests, the general trend when skewing the data distribution is a decrease in throughput 

of 10%. However, RAID Level 5 throughput stays relatively constant There are several reasons for this 

difference. 

First, the skew of the data distribution is done on the logical disk. In RAID Level 0 the logical disk 

is identical to the physical disk. In RAID Level 1 the logical disk maps to one or both of two physical 

disks, independent of which stripe is accessed. However, for RAID Level 5, a logical disk does not map 

into a single physical disk. Rather, the mapping from logical disk to physical disk depends on which stripe 

is accessed. For example, in Figure lb, logical disk 0 (stripes 0, 4, 8, etc.) is spread over physical disks 0 

and 1. Thus, the skew on the data distribution is smoothed over by the logical to physical mapping done by 

RAID Level 5. This lessens the effect of skewing the data distribution for both RAID Level 5 small reads 

and small writes. 

For RAID Level 5 small writes, the skewed data distribution is further smoothed because two disks 

are involved in each request Recall that the starting stripe is always chosen uniformly over all stripes. 

Thus, although the choice of the data disk is non-uniform, the choice of the parity disk, which depends on 

both the starting disk and the starting stripe, is uniform over all disks. Having the parity disk uniformly 

chosen from all disks again smooths the skew on the disks. 

We again plot the relative throughput for each RAID Level, both with and without the data distribu­

tion skewing (Fignre 16). 

9.3. Mixing Reads and Writes 

Many different types of workloads exist in the real world. Very few, if any, are 100% reads or 

writes. We have used 100% reads or writes to better understand how varying other workload parameters 

affects performance. Now, keeping equalized response times, distributed request sizes, and skewed data 
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distributions, we at last mix reads and writes. 

At first thought, we may expect the throughput for RAID Levels 1 and 5 to be the weighted average 
of the throughputs for 100% reads and 100% writes. This would cause linear variation in Figure 17. 
Instead, though close to linear, throughput changes superlinearly with the fraction of reads in the workload. 
To understand why throughput is superlinear, consider an idle system receiving a stream of read or write 
requests. Assume reads have a response time of R and writes have a response time of W. Estimating 

throughput as the reciprocal of the average response time, the throughput for 100% reads is -} and the 

throughput for 100% writes is ir· A mix of 50% reads and 50% writes will not have a throughput that is 
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Figure 17: Effect of Mixing Reads and Writes. Throughput per disk is graphed as a function of the per­centage of reads in the workload. RAID Level 0 reads and writes are assumed to be equivalent, and are shown as a horizontal line in both graphs. The size distribution for large requests is a normal with a mean of 1.5MB (response time target of 780 ms). The size distribution for small requests is an exponential with a mean of 6 KB (response time target of 148 ms). Data distribution is skewed. 
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[ 
1.+-' ] the weighted average between reads and writes, i.e. R W • Rather, because the average response 

time is ¥· the throughput of the system should be ~- Estimating throughput as the average of the 

constituent throughputs (averaging the reciprocal of the response times) will always be higher than the 

actual throughput (the reciprocal of the average response time). Thus, a graph of throughput against frac-

tion of reads will be superlinear. 

9.4. Summary of More Realistic Workloads 

To summarize, we look at Figures 17. Note that for small requests, RAID Levell consistently yields 

higher throughput per disk than RAID 5. In fact, with over 90% reads, seek optimization allows RAID 

Level I to yield higher throughput per disk than even RAID Level 0. 

In contrast, for large requests, RAID Level 5 almost always performs better than RAID Level I. 

From 0% reads to almost 95% reads, RAID Level 5 yields higher throughput per disk than RAID Level 1. 

10. Additional issues 

In this section, we explore additional issues, such as further varying the request size distribution, 

varying the unit of interleaving, and scaling the number of disks. Unless otherwise stated, we define large 

as a normal distribution with mean 1.5 MB and small as an exponential distribution with mean 6 KB. We 

also continue to equalize response times and skew the data distribution. A major change from the previous 

section is that we now define the read workload to be a mixture of 90% reads and I 0% writes; similarly, we 

now define the write workload to be a mixture of 90% writes and 10% reads. 

10.1. Varying the Request Sizes 

In Section 9.1, we both distributed the request sizes and changed the mean. In this section, we con-

tinue to change the mean of the request size distribution by using various normal distributions. 

Figure 18 graphs the relative throughput for RAID Levels 1 and 5 against average request size. In 

Figure !8a, RAID Level l relative throughput for writes is approximately 50% for all sizes, as expected. 

In contrast, relative throughput for RAID Level 5 writes increases as request size increases. As requests 
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Figure 18: Effect of Varying the Average Request Size. These graphs show the relative throughput per 
disk of RAID Levels I and 5 as a function of average request size. In general, the relative throughput of 
RAID Level 5 increases with increasing request size, whereas the relative throughput for RAID Level 1 
changes very little with request size. Data distribution is skewed. 

become larger and cover more full stripes, RAID Level 5 becomes dominated by fttll stripe write perfor-

mance rather than the partial stripe write performance and relative throughput approaches N N 1 . Below .5 

MB, RAID Level I has higher throughput per disk than RAID Level 5; at sizes larger than .5MB, RAID 

Level 5 yields higher throughput per disk than RAID Level I. 

In Figure 18b, RAID Level I relative throughput for reads decreases with increasing request size. 

With small requests, seek optimization pushes RAID Level I relative throughput above 100%. As requests 

get larger and response time increases, the benefit of seek optimization is minimized. Relative throughput 

then drops to 90%. The 10% writes in the workload cause the total relative throughput to be less than the 

read performance in Section 9.2 (120% for small requests, 100% for large requests). 

For RAID Level 5, relative throughput is 85% for small request sizes, then increases to 90%-95% as 

request sizes increase. This effect is due almost entirely to the 10% writes in the workload. For small 
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request sizes, writes have a relative throughput of 20%-25%. However, at larger request sizes, the relative 

throughput of writes is 70%-80%, so relative throughput increases. 

10.2. Sector Striping vs. Track Striping 

Up to now, we have always used track striping. In this section, we explore sector level striping. We 

address two questions: 

• Is it possible to analyze RAID Level I and 5 independent of the unit of interleaving? 
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Figure 19: Relative Throughput for Track and Sector Striping. Relative throughput per disk with sec­
tor striping is compared against the relative throughput per disk with track striping. We see that using sec­
tor striping only affects relative throughput for RAID Level 5 writes. The response time target for small 
requests is 148 ms; the response time target for large requests is 780 ms. The read workload is 90% reads 
and I 0% writes; the write workload is 90% writes and 10% reads. Data distribution is skewed. 
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• Which unit of interleaving gives the best absolute throughput? 

The RAID paper analysis was independent of the unit of interleaving. Dependence from unit of 

interleaving, as well as from factors such as hardware specifications, was eliminated partly by evaluating 

the throughput relative to RAID Level 0. Also, the analysis achieved independence from the unit of inter-

leaving by basing' the analysis on full stripe or individual requests. These request sizes scaled with the unit 

of interleaving. In our experiment, we fix the request size distribution independent of the unit of interleav-

ing to learn if identical workloads can be analyzed without regard for the unit of interleaving. Figure 19 

shows the relative throughput for RAID Levels I and 5 for various sizes with 90% writes and 90% reads. 
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Figure 20: Change in Absolute Throughput after Changing from Track to Sector Striping. 
Throughput with sector striping is shown as a percentage of the throughput with track striping. Throughput 
with track striping is generally better than throughput with sector striping. An exception to this is RAID 
Level 5 large writes. The reads workload is 90% reads and 10% writes; the write workload is 90% writes 
and 10% reads. Data distribution is skewed. 
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For RAID Level 1, relative throughput with sector striping is close to relative throughput with track strip­

ing. Similarly, for RAID Level 5 reads, relative throughput with sector striping closely matches relative 

throughput with sector striping. However, for RAID Level 5 writes, the relative throughput changes with 

the unit of interleaving. Thus, although analysis for RAID Level 1 and RAID Level 5 reads can be done 

with little regard to unit of interleaving, the analysis for RAID Level 5 writes should take into account the 

unit of interleaving. 

To compare sector striping to track striping in terms of absolute throughput, we show throughput 

with sector striping as a percentage of throughput with track striping (Figure 20). The general trend in Fig­

ure 20 is that changing from track to sector striping causes throughput to decrease. This decrease is more 

pronounced for small requests than for large requests. For very small requests (single sector), the disks see 

the same stream of physical requests using either sector striping or track striping. Slightly larger requests 

(larger than a sector but less than a track) are mapped onto multiple disks with sector striping but onto a 

single disk with track striping. Thus, in track striping, the single disk is transferring more data per seek 

than the multiple disks are in sector striping. This causes lower throughput with sector striping. With 

extremely large requests (more than 10 tracks), both sector striping and track striping cause disks to 

transfer the same amount of information, leading to roughly the same throughput. 

The sole exception to this trend in changing from track to sector striping is RAID Level 5 writes. 

The trend of decreased throughput with sector striping was caused by spreading a request over more disks, 

with each disk transferring less data. However, RAID Level 5 writes benefit by using more disks in servic­

ing a request Relative throughput for partial stripe writes ranges from 25% for single disk partial stripe 

writes to N ;/ for wider (many disks) partial stripe writes. Thus, spreading requests over more disks leads 

to wider partial stripes and higher relative throughput. This can offset the performance degradation caused 

by having each disk transfer less data. With very large requests, throughput also increases because the par­

tial stripe portion of the request will be a lesser fraction of the total request 

10.3. Scaling the Number of Disks 

So far in this paper, we have limited the maximum number of total disks to 20. All RAID Levels 

have used lO data disks, with RAID Level l using 20 total disks and RAID Level 5 using 11 total disks. In 
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this section, we explore what happens as we vary the number of data disks used. 

Figures scale shows how the throughput per disk varies as we vary the number of data disks. We 

continue to use a target response time of four times the response time of an idle RAID Level 0 system. We 

also continue to define small as an exponential distribution with mean 6 KB. However, we change our 

definition of a large request. With 10 data disks, our previous definition of a large request (normal with 

mean 1.5 MB) covered an average of 4 stripes. Thus, each disk transferred 4 tracks per seek. However, 

with more data disks, this average sized request no longer covers 4 stripes. To compensate, we scale the 

size of an average request along with the number of disks. We maintain an average request size of !50 

KB/data disk. For example, with 20 data disks, we use an average request size of 3 MB. With this 

modification, an average large request will continue to cause each disk to transfer approximately 4 tracks. 

In general, throughput per disk is approximately constant, showing that it is independent of the 

number of data disks. An important exception occurs when the total number of disks exceeds 20. For 

example, a RAID Level I system with 15 data disk (30 total disks) shows a dramatic drop in throughput 

per disk. As discussed in Section 5.2, this drop in throughput per disk comes from not scaling the CPU 

power along with the number of disks. With more than 20 disks, the CPU begins to limit performance and 

maintaining constant throughput per disk becomes impossible without more CPU power. 

We also see that the throughput per disk of RAID Level 5 large writes (Figure 21c) increases slightly 

with more data disks. This is because there is always one parity disk per system, and, with more data disks 

in the system, the overhead of updating this parity disk affects overall system performance less. Thus, 

throughput per disk increases. 

10.4. Multiple Disks per Channel Path 

We have. so far, connected one disk per channel path (Figure 4). When a disk is ready to transfer 

information, no channel conflicts are possible. With more than one disk is connected to a channel path, 

(Figure 22) channel conflicts are possible [Ng 88]. These channel conflicts delay the disk from transferring 

data and cause the disk to miss a rotation (an RPS miss). Figure 23 shows the effect of connecting multiple 

(one or two) disks per channel path, by showing throughput with multiple disks per channel path as a frac­

tion of throughput with one disk per channel path. 
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Figure 21: How RAID's Scale. Throughput per disk is shown as a function of the number of data disks. 

In general, throughput per disk is constant under 20 total disks. The size distribution for large requests is a 

normal with a mean of 150 KB per data disk. The size distribution for small requests is an exponential 

with a mean of 4 KB. Response time target for small requests (for all numbers of disks) is 148 ms. 

Response time target for large requests: 5 data disks: 720 ms, lO data disks: 780 ms, 15 data disks: 876 ms, 

20 data disks: 924 ms. Data distribution is skewed. 
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Figure 22: Architecture with Multiple Disks per Channel Path. This figure shows how multiple disks 
per channel are connected to the memory bus for Section 10.4. Strings of four disks are shared between 
two paths to the memory bus. 
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Figure 23: Change in Absolute Throughput after Connecting Multiple Disks per Channel Path. 
Throughput with multiple disks per channel path is shown as a percentage of thfoughput with one disk per 

channel path. Throughput for large request sizes drops to half the throughput with one disk per channel 

path, whereas throughput for small requests only decreases 10%. 

Two channel paths are connected to one string of four disks. We represent a string by letters and the 

disks on a string by numbers (e.g. disks aO, al, a2, a3 make up one string). RAID Levels 0 and 5 have a 

straightforward mapping: disks 0-10 are aG-a3, bG-b3, c0-c2. Thus, RAID Levels 0 and 5 have 10 or 11 

disks with 6 channel paths total. RAID Level 1 has the following mapping: the primary data disks are aO-

a3, b0-b3, cO-cl; the shadow disks are c2-c3, d0-d3, e0-e3. 

Throughput for large requests drops to 50%-55% of the throughput with one disk per channeL 

Because each disk is transferring an average of 4 tracks per request, the channel is often busy. Sharing a 

busy channel causes a severe drop in throughput. Small requests, on the other hand, only drop in 

throughput by 10%-15%. Because very little time in a small request is spent transferring data (and thus 

tying up a channel path), little potential for channel conflicts exist and little penalty is seen. 
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11. Summary 

We have started with a simple model for performance and, step by step, measured performance with 

more and more realistic experiments. We first measured maximum throughput using the RAID paper 

workload of 100% reads or writes, individual or full stripe requests. We found that the simple model accu­

rately predicted performance for most cases. The main exception was RAID Level 1 reads, where seek 

optimization causes higher than expected throughput 

Second, we equalized response times. We found that equalizing response times hurt the relative 

throughput of RAID Levels with higher response times (RAID Level 5 small writes) and helped the rela­

tive throughput of RAID Levels with lower response times (RAID Levell small reads). 

Third, we distributed the request sizes and made large requests larger and small requests smaller. 

We found that seek optimization ceased to noticeably help RAID Level 1 large reads. RAID Level 5 large 

reads were penalized for skipping parity tracks. RAID Level 5 large writes suffered from partial stripe 

writes. Even more partial stripe writes were generated by allowing unaligned requests. 

Fourth, we mixed reads and writes. We found that RAID Level 5 had higher throughput per disk 

than RAID Level 1 for large requests for almost all mixes of reads and writes. In contrast, RAID Level 1 

had higher throughput per disk than RAID Level 5 for small requests for all mixes reads and writes. 

Lastly, we explored issues such as varying the request sizes and using sector striping. We found that 

track striping was usually better than sector striping, with the notable exception of RAID Level 5 large 

writes. 

12. Future Work 

We are continuing to analyze the performance of disk arrays. In particular, we are interested in 

arrays of small disks. We are designing, building, and evaluating a disk array of 30-50 CDC Wren disk 

drives. One step in that evaluation will be to carry out experiments similar to the ones in this paper. 

Funher work will entail building a file system and running real world benchmarks on that system. 
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The following is the data used in thls paper: 

Field 1 (eg. rO, rl, r5}; program used: rO = r-aidO, rl • r<~idl, rS 
Field 2 (eg. 10): unit of interleaving, in 4K sectors 
Field 3 (eg. tl3): code for- read/write ratio: 

t7 90\ reads 
t8 = 10\ reads 
t9 = 100% writes 
t1 0 = 30% reads 
tll = 50% reads 
t12 = 70% reads 
t12 70% reads 
tl3 100% reads 

Field 4 (eg. sl}: code for request size distribution 
sl = full stripe 
s2 = individual 

normal with mean 
= exponential with 

300 sectors, standard deviation 300 sectors 
mean 1 sector 

raid:> 

,, ,, ,, 
>11 
s29 
>31 
>32 

'" '" 

normal with mean 
normal with mean 
normal with mean 
normal with mean 
normal with mean 

= normal with mean 

450 sectors, standard deviation 450 sectors 
150 sectors, standard deviation 150 sectors 
25 sectors, standard deviation 25 sectors 
100 sectors, standard deviation 100 sectors 
500 sectors, standard deviation 500 sectors 
600 sectors, standard deviation 600 sectors 

field 5 
15 

normal with mean 192 sectors, standard deviation 192 secto~s 
(eg. 110); code for data distribution 
normal with standard deviation 15 disks 

16 ~ normal with standard deviation 10 disks 
17 normal with standard deviation 5 disks 
19 normal with scandard deviation 20 disks 
110 ~ uniform aligned data distribution 

Field 6 (eg. lal-S, lat200}: target response time (for 90% latency marks) 
lat-x = keep the queue depth fixed at x outstanding logical request 
latxxx = taroet the response time at xxx: ms 

Field 7 (eg. dlO}: number of disks 
Field 8 {eg, ro3.338): request overhead, in ms 
Field 9 {eg. la233) : measured response time ( 90% marks) 
Field 10 (eg. lap.899): measured percentage of requests which met the measurea 

response time 
Field 11 (eg, latp.81): measured percentage of requests which met the target 

response time 
Field 12 (eg. laav214.618): measured average response time in ms 
Field 13 (eg. i1398): number of I/0' s 
Field 14 (eg. eO}: amount of CPU time spent in exclusive or~lng 
Field 15 {eg. sz100}: measured average size of request 
Field 16 (eg. szs.3): measured standard deviation in sl ze of requests 
Field 17 (eg. ti60255.4): total time of run 
Field 18 (eg. th9,06298): throughput in MB/s 
Field 19 (eg. io23.2012): I/O's per second 
Field 20 (eg. ch40.0411): total time per ac.:cess spent by child process 
Field 21 (eg. chc1.27629): cpu time spent per access by child process 
field 22 (eg. qd5.01788}: average queue depth over the run 
Field 23 {eg. ssch13993): total number of start subchannels 
field 24 (eg. conn16.1593): average connect time per disk access 
Field 25 (eg. disc22.5913): average disconnect time per disk access 
Field 26 (eg. pend.23765): average function pending time per disk access 
Field 27 {eg. cpu2912.22): total cpu time 
field 28 (eg. uO}; run reached stability (ul} or not (uO} 

msum 

rO 10 tl3 s1 110 lat-5 dlO crO ro3.338 la233 lap.899142 latpO laav214.618 i1398 eO szlOO szsO ti60255.4 th9.06298 io23.2012 ch40.0411 chcl.27629 qd5.0l788 sschl3993 connl6.1593 di 
sc22.5913 pend.23765 cpu2912.22 uO 
rO 10 t13 s2 110 lat-120 d10 crO ro.699658 lal040 lap.899921 latpO laav508.411 114067 eO sz10 szsO ti61022.4 th9.00477 io230.522 ch40.1164 chc1.26025 qdl21.024 sschl4186 connl6.15 
67 disc22.6262 pend.236519 cpu6704.87 uO 
rl 10 tl3 s1 110 lat~10 d20 crl ro3.73798 la278 lap.898718 latpO laav191.986 13120 eO szlOO szsO ti60251.5 th20.22"17 io51.7829 ch35.663 chc1.2672 qd10.0321 ssch31252 connl6.l61 di 
sc18.1206 pend.23331 cpu6935.06 uO 



msum 
rl 10 tl3 s2 110 lat-240 d20 crl ro.819269 Ja9~i7 lap.900025 latpO laav439.637 132400 eO szlO szsO ti60894.3 th20.784 io532.069 ch35.1774 chcl.30254 qd241.778 ssch32634 conn16.l58B 
disc17.5816 pend.231686 cpul1205.2 uO 

rl 10 t9 sl 110 lat-5 d20 crl ro6.86653 la233 lap.900358 latpO laav214.52/ 11395 eO szlOO szsO ti60226.8 th9.04784 io23.1625 ch40.408 chcl.18748 qd5,01792 ssch27925 conn16.1441 di 
sc22.9866 pend.232784 cpu5761.84 uO 
rl 10 t9 s2 110 lat-120 d20 crl ro1.3117 lal083 lap,89986 latpO laav519.434 113761 eO szlO szsO ti6130B t!a8.76785 io224.457 ch40.3154 chc1.232 qd121.046 ssch27716 conn16.146 disc2 
2.9276 pand.23198 cpul0248.5 uO 
r5 10 t13 sl 110 lat-6 dll crS ro3.12503 la280 1ap.902084 latpO laav232.613 12063 eO sz100 szsO t180309,8 thl0.0344 io25.688 ch39.9428 chc1.22715 qd6.01745 ssch20650 conn16.1585 d 
isc22.47"17 pend.233939 cpu4483.73 uO 
r·S 10 t13 s2 110 lat-132 dll crS ro.462504 1a1156 1ap.90004 1atp0 laa.v502.776 115511 eO szlO s.:sO t.i61942.8 u-,9,78158 1o250,408 ch40.174~ chc1.25509 qd133.123 ssch15643 conn16.156 
9 disc22.7096 pend.232729 cpu5083.76 uO 
r5 10 t9 sl 110 1at-5 dll cr5 ro4.00511 la233 1ap.904591 1atp0 1aav214,888 11394 e9851.16 szlOO s.:sO t160239.1 lh9,03949 1o23.1411 ch40.2587 chc1.31094 qd5,01793 ssch15359 conn16. 
1568 disc22.7444 pend.236465 cpu11435.3 uO 
r5 10 t9 s2 110 1at-66 dll crS ro1.32368 lal720 lap.899904 latpO laav924.554 14238 e7368.39 sz10 szsO t162198.1 th2.66161 1o68.1371 ch36.3098 chc1.49142 qd67.0278 sschl7114 conn16 
.157 discl8.8004 pend.233734 cpulOOOO uO 
rO 10 tl3 s3 16 1at780 d10 crO ro3.64628 1a791 1ap.899719 latp.89597 laav587,633 11068 eO sz378.298 szs237.106 t1100740 th15.6662 iol0.6015 ch95,0774 chc4,935 qd6,33708 sschl0093 
conn65,8926 d1sc26.0005 pend.23222l cpu2220.92 uO 
rO lJ t13 s4 16 1at148 d10 crO ro.967385 la145 lap,899984 latp,90693 laav70.2815 118736 eO sz1.57851 szs.954408 t177657,5 thl.48765 io241.265 ch27,7283 chc.750901 qdl7.5859 ssch18 
757 conn3.22694 disc23.7063 pend.230894 cpu12336.9 uO 
rO 10 t7 s3 16 lat-1 dlO crO ro22.962 1a195 lap.901484 1at~O laav12l,Jij7 1741 eO sz377.236 szs236.316 ti90183.6 th12.1078 io8.21657 ch94.0301 chc4.04791 qdl.00135 ssch7042 conn65, 
2886 disc25.6957 pend,234388 cpul870 .. 15 uO 
rO 10 t7 s4 16 1at-1 dlO crO ro.654917 1a3"1 lap,891397 latpO laav28.36 14208 eO szl,60979 szs.9B6756 til20089 th.220344 1o35.0407 ch27.4328 chc.827944 qd1.00024 ssch4208 conn3.277 
6 d1sc23.4084 pend.231027 cpl-l1752.13 uO 
r1 10 tl3 s3 ]6 1at780 d20 crl ro7,24226 la791 lap.9 latp,892 laav497.526 i2505 eO sz386.345 szs236,917 t1120939 th31.2591 io20,7129 ch92.7267 chc4,38754 qdl0.4643 ssch23946 conn6 
6.6342 disc22.7589 pend.231219 cpu5746.27 uO 
r1 10 t13 s4 16 latl48 d20 cr1 rol.l355 1a14'1 1ap,899684 latp.904714 laav77.6468 1'1021 eO sz1.56844 szs.929839 t112111.8 th3.55154 io579.682 ch24.8604 chcl.4997 qd46.5746 ssch7C57 

conn3.21244 d1sc20.7869 pend.2297 cpu5322.18 uO 
rl 10 t9 s3 16 lat780 d20 cr1 ro7.01629 la781 1ap.901395 l~tp,901395 laav598.453 11075 eO sz377.98 szs234.261 ti100782 thl5.749 iol0.6665 ch93.6306 chc4.08376 qd6.45395 ssch20479 
conn65.5071 disc25.3979 pend,231668 cpu4397.0':l uO 
r1 10 t9 s4 16 1atl48 d20 crl ro2.~2932 la145 1ap.900834 1atp.909178 1aav77.3927 135619 eO sz1.58427 szs.976633 til55662 th1.41608 io228.823 ch27.7296 chc.809779 qd18.3582 ssch712 
78 conn3.23342 disc23.6693 pend.23ll cpu49143. 7 uO 
r5 10 t13 s3 16 lat780 dll cr5 ro3.90841 la777 1ap.900446 1atp,910847 laav596.944 1673 eO sz375.009 szs234,932 t160836,9 thl6.205 1oll.0624 ch92.1498 chc5,94573 qd6.74294 ssch6941 

conn63.0905 disc26.0262 pend.232192 cpul629.57 uO 
r5 10 t13 s4 16 latl48 dll cr5 ro.62268 lal44 lap.899541 latp.907798 laav70.4473 16569 eO sz1.57695 szs.992693 t123467 th1.72433 io279.925 ch27.6905 chc.923976 qd20.0094 ssch6588 
conn3.22512 disc23.6798 pend.230043 cpu2656.72 uO 
r5 10 t9 s3 16 1at780 d11 cr5 ro8.4284 la794 1ap,90061 Jatp.895122 laav576.943 11640 e55562.7 sz384.684 szs234.527 tl201570 th12.2259 io8.13611 ch74.6627 chc3.42341 qd4.73171 ssch 
26145 conn50.4658 disc21.6273 pend.233289 cpu52192.9 uO 
r5 10 t9 s4 16 latl48 dl1 cr5 ro2.08863 la146 lap.900352 latp,911487 laav89,8798 17095 el330.22 sz1.59239 szs.974169 ti100253 th.440214 io70.7709 ch21.8746 chc.762837 qd6.43693 ss 
ch28402 conn3,24848 disc17.8499 pend.231876 cpu9288,52 uO 
eKorS 10 t7 s3 16 1at-1 dll cr5 ro25.9009 la210 lap,900329 latpO laavl31.116 1913 el916.7 sz398.783 szs235o563 ti120202 thl1.8319 io7.59554 ch92.9173 chc3.8137 qdl.0011 ssch9975 c 
onn64.5381 d1sc25.3423 pend.234545 cpu4452.87 uO 
exo!-5 10 t7 s4 16 lat-1 dl1 cr5 ro.897763 la44 1ap.B96905 1atp0 laav30,5335 13909 e41,319 szl,6022 szs.99839 ti120050 th.203789 io32,5614 ch25.6209 chc.84496 qd1.00026 ssch5085 co 
nn3.27912 disc21.5941 ~end.229318 cpu1974.56 uO 
exor5 10 tB s3 16 lat-1 dll cr5 ro23.9128 la227 la.p.90125 latpO laavl49.626 1800 e11678.6 sz390.71 szs241.24 t1120188 th10.1588 io6.65624 ch76.6579 chc3.34966 qd1.00125 ssch12276 
conn52.1922 disc21.8409 pend.236825 cpul3452.8 uO 
exor5 10 t8 s3 16 1at780 dl1 cr5 ro8,70701 1a777 lap.900277 1atp.907202 laav586.568 1723 el1724.6 sz399.959 szs226.651 t190488.2 th12.4831 1o7,99 ch77.0924 chc5.1264 qd4.75795 sse 
hl1296 conn52.4812 disc21.9365 pend.231581 cpu12522 uO 
exor5 10 tB s4 16 lat-1 d11 cr5 ro2.71604 1a57 lap.890075 latpO laav47.8541 i1874 el56,493 sz1,57097 szs.963324 t190077 th.127669 1o20.8044 ch21.9154 chc.887377 qd1.00053 -ssch6887 

conn3.21717 discl7.9455 pend.230054 cpu2251.58 uO 
exor5 10 t8 s4 16 latl48 dll cr5 ro1.92481 1a146 lap.900188 latp,909123 laav87.4918 18509 e701.094 szl.57751 szs.96136 t1111182 th.4716 io76.532 ch22.0649 chc.762969 qd6.B6309 sse 
hll346 conn3.21652 discl8.0731 pend.231262 cpu9642,41 uO 
exor5n 10 t7 s3 16 1at-1 dll cr5 ro24.9404 la208 lap.899676 latpO 1aav129.292 i927 eO sz385,51B szs242.051 ti120344 thll.6001 io7.70294 ch90.7976 chc3.78484 qdl.OOlOB sschl0052 co 
nn62.9533 disc24,8151 pend.234544 cpu2823.8 uO 
exorSn 10 t7 s4 16 lat-1 d11 cr5 ro.868469 1a43 1ap.900776 1atp0 laav30.2117 12963 eO sz1.57138 szs.939919 ti90037.1 th.202 io32.9087 ch25.6326 chc.B62732 qd1.00034 ssch3803 conn3 
.2379 disc21.6507 pend.232642 cpul443.34 uO 
exor5n 10 tB s3 16 lat-1 d11 crS ro22,3047 la225 1ap,900504 latpO 1aav151.068 1794 eO sz38A.436 szs241.905 t1120427 thl0.004 io6.5932 ch76.598 chc3.4116 qdl.00126 sschl2113 conn52 
.1422 dis~21,8234 pend.234253 cpu3219.16 uO 
exor5n 10 t8 s3 16 1at780 dl1 cr5 ro7.90377 1a77B 1ap,90169 1atp.907834 laav568.722 11953 eO sz400.03 szs245.661 ti241233 th12.6508 ioB.09592 ch77.9507 chc3.53921 qd4.63953 ssch29 
967 conn53.247 disc21,9967 pend.232426 cpu7045.45 uO 
exor5n 10 t8 s4 16 1at-1 dll crS ro2.61631 laSS lap,909413 latpO laav48.2032 13102 eO sz1.56319 szs.915712 til50179 th.126125 1o20.6553 ch21.8317 chc.833387 qd1.00032 sschll436 co 
nnJ.2014B disc17.8845 pend.23085 cpu3420.03 uO 
exorSn 10 t8 s4 16 lat148 d11 cr5 ro1.8602 1al48 Jap.901677 latp.90561 laav88.7933 14837 eO sz1.58611 szs1.00458 t160116.3 th.498512 1o80.4606 ch21,8594 chc.795872 qd7.32396 sschl 
7935 conn3.24032 discl7.8482 pend.230614 cpu5023.96 uO 
rO 10 tl3 sl 110 lat-1 dlO crO ro10.9142 la67 lap.915101 latpO laav59.9931 11331 eO sz100 szsO t180160.6 th6.486 io16.6042 ch40,8418 chc1.2694 qdl.00075 sschl3310 conn16.1564 disc 
23.3885 pend.259606 cpu3303.44 uO 
rO 10 tl3 sl 110 1at-2 d10 cro r·o3.35535 la100 lap.948953 latpO 1aav86.0486 11391 eO szlOO szsO ti60120.7 th9.03781 io23.1368 ch40.5287 chcl.2056 qd2.00288 ssch13912 conn16.1601 d 



msum 
isc23.0612 pend.239834 cpu2899.69 uO 
rO 10 t13 sl 110 lat-3 dlO crO ro3.60804 la149 lap.895263 latpO laavl30.183 12301 eO szlOO szsO til00194 th8.9708S io22.9654 ch40.45?5 chcl.17716 qd3.00391 ssch23021 conn16.1602 d 

isc22.9784 pend.239514 cpu4861.19 uO 
rO 10 t13 sl 110 lat268 dlO crO ro3.77806 la280 lap.901217 latp.894775 laav230.215 11397 eO szlOO szsO ti60271.3 th9.0541 io23.1785 ch40.2444 chcl.63311 qd5.3801 sschl3982 connl6. 

1601 disc22.7762 pend.239302 cpu2977.17 uO 
rO 10 t13 s2 110 lat-1 dlO crO ro. /05255 la50 lap.903539 latpO laav41.6041 11441 eO szlO szsO ti60131.2 th.936104 io23.9643 ch40.6861 chcl.35061 qdl.00069 sschl441 conn16.1586 dis 
c23.2997 pend.229441 cpu518.672 uO 
r-0 10 t13 s2 110 lat-10 d10 era ro1.21883 lall6 lap,902157 latpO laav67.1037 18902 eO szlO szsO ti60098.1 th5.78612 1o14B.125 ch40.1194 chcl,20541 qdl0.0112 ssch8911 conn16.1585 d 

1sc22.6713 pend.230877 cpu4375.52 uO 
rO 10 tl3 s2 110 1at-20 dlO crO rol,1498 la204 lap.900425 1atp0 laav105.745 115069 eO sz10 szsO ti80312.1 th7.32931 1ol87,63 ch40.2185 chcl.16765 qd20.0265 ssch15087 conn16.1577 d 

1sc22.7513 pend.232923 cpu7794.66 uO 
rO 10 t13 s2 110 lat-30 d10 crO rol.03933 1a305 1ap.900229 1atp0 laav146.2 i12257 eO szlO szsO ti60302.3 th7.93981 1o2a3.259 ch40.262 chcl.18572 qd30.0734 ssch12286 conn16.1586 di 

sc22.7896 pend.233163 cpu6086.58 uO 
rO 10 t13 s2 110 1at-40 d1a era ro1.18639 la394 1ap.B99702 latpO laav184.899 121545 eO sz10 szso t1100443 th8.37888 io214.499 ch40.1722 chcl.1554 qd40.0743 ssch21584 conn16.1589 d 

1sc22.6932 pend.233376 cpu14539.3 uO 
rO 10 t13 s2 110 1at-5 d10 crO ro.978902 laBl 1ap.896564 1atp0 1aav51.8916 15763 eO szlO szsO t160083.6 th3,74673 1o95.9164 ch40.2876 chcl.24688 qd5.00434 ssch5767 conn16.1592 dis 

c22.8562 pend.231119 cpu2253.69 uO 
rO 10 tl3 s2 110 lat-60 dlO crO ro.890886 1a572 lap,899924 latpO laav266.355 122461 eO szlO szsO ti100662 th8.71617 1o223,134 ch40.1438 chc1,16133 qd60.1603 ssch22519 conn16.1589 

d1sc22.6605 pend.233B49 cpu11555.7 uO 
t'O 10 t13 s2 110 lat200 d10 crO rol.l'/718 la204 1ap.899785 1atp.B95759 laav103.998 111197 eO sz10 szsO t160212.9 th7.26394 io185.957 ch40.2394 chcl.35219 qd19.7151 sschll216 conn1 

6.1595 disc22.7652 pend.233107 cpu6151.8 uO 
rO 10 t13 s4 110 1at-10 d10 ceO ro.990739 la84 1ap.898565 latpO laav47.5822 120834 eO sz1.58813 szs.962848 t1100090 th1.2913 1o208,153 ch27.6024 chc.690678 qd10.0048 ssch20842 con 

n3.24217 disc23.567 pend.230476 cpu12404.1 uO 
rO 10 t13 s4 110 lat-20 dlO crO ro.935774 1a146 lap.899981 latpO laav73.4698 116210 eO sz1.59112 szs.963425 ti60190 th1.67387 io269.314 ch27,7813 chc.666457 qd20.0247 ssch16227 co 

nn3.24531 disc23.7377 p~nd.230624 cpul0099.6 uO 

rO 10 tl3 s4 110 lat-30 a10 crO ro.893814 la213 lap.900333 1atp0 1aav101.761 l2343.9 eO sz1.58701 szs.964'i.98 tl80155.1 th1.81279 1o292.421 ch2"7.8818 chc.650426 qd30.0384 ssch23466 
conn3.24082 d1sc23.B375 pend.230559 cpu14802.1 uO 
rO 10 t13 s4 110 lat-40 dlO crO ro1.00655 1a263 1ap.899526 latpO laav128.214 124764 eO sz1.59203 szs.995696 ti80208.8 thl.92004 1o308.744 ch27.852 chc.647687 qd40.0646 ssch24804 c 

onn3.247 d1sc23.794 pend.231674 cpu18853.9 uO 

rO 10 t13 s4 110 lat-5 dlO crO ro.893866 laSS lap.9006J9 latpO 1aav35.7411 18346 eO szl.56578 szs.97687 ti60055.9 th.B49989 iol38.971 ch27.4735 chc.73302 qd5,003 ssch8351 conn3.20 
457 disc23.4976 pend.231461 cpu3576.07 uO 

rO 10 t7 s3 16 iat-2 dlO crO ro5.21851 la282 lap.89934 1atp0 1aav198.218 1606 eO sz392.757 szs239.759 ti60321.8 th15.4128 io10.0461 ch98.2249 chc3.66428 qd2.0066 ssch5748 conn68.2 
546 d1sc26.7472 pend.231i15 cpu1278.97 uO 
rO 10 t7 s3 16 1at-3 dlO crO ro3.99026 1a403 1ap.899637 latpO laav290.88 1827 eO sz398.622 szs240.167 ti80489.1 th15.9989 io10.2747 ch9B.0513 chc3.53301 qd3.01088 ssch7863 conn69. 

0284 d1sc25.7663 pend.230963 cpu1721.91 uO 
rO 10 t7 s3 16 1at-4 d10 crO ro3.23874 1a500 1ap.900474 latpO 1aav378.644 1633 eO sz386.904 szs229.408 ti60257.8 thl5.8764 1o10.5049 ch9J.B61 chc3.88549 qd4.02528 ssch6050 conn66. 

89 disC25.9165 pend.231119 cpul312.16 uO 

rO 10 t7 s3 16 lat-5 d10 crO ro4.02901 1a626 1ap.900322 latpO laav482,684 11244 eO sz394.197 szs237.371 t1120560 th15.8888 io10.3185 ch96.8872 chc3.45381 qd5.0201 ssch11910 con~t67 

.7891 d1sc25.8691 pend.231518 cpu2603.27 uO 
rO 10 t7 s3 16 1at-1 d10 crO ro22.962 lal95 lap.901484 latpO laav121.387 1741 eO sz377.236 szs236,316 t190183.6 th12.1078 io8.21657 ch94.0301 chc4.04791 qd1.00135 ssch7042 conn65. 

2886 disc25.6957 pend.23438B cpu1870.75 uO 
rO 10 t7 s4 16 1at-10 d10 crO ro.88872 la87 1ap.90126 latpO laav48,3705 112310 eO szl.58741 szs.966517 ti60160 th1.26882 io204.621 ch27.6225 chc.695207 qd10.0081 ssch12317 conn3.2 

4203 d1sc23.J997 pend.229292 cpu7065,41 uO 

rO 10 t7 s4 16 lat-20 dlO crO ro.895941 la163 lap.899593 1atp0 1aav78.081 115264 eO sz1.58045 szs.965373 t160142.2 th1.56686 1o253.798 ch27.7319 chc.673439 qd20.0262 ssch15284 con 
n3.23 disc23.7116 pend,229402 cpu9353.84 uO 

rO 10 t7 s4 16 1at-30 d10 crO ro.768451 1a250 lap.900178 latpO laav109.594 116336 eO sz1.57952 szs.966781 t160238.4 th1.67324 1o271.189 ch27.7002 chc.67404 qd30.0551 ssch16364 con 

n3.22896 disc23.6815 pend.230125 cpu8942.36 uO 
rO 10 t7 s4 16 lat-40 d10 crO ro.908068 la344 lap.900106 latpO 1aavl40.287 134033 eO sz1.58311 szs.960434 ti120661 th1.74424 1o282.056 ch27.9113 chc.66123 qd40.047 ssch34070 conn3 
.23476 disc23.8807 pend.230269 cpu22798.3 uO 

rO 10 t7 s4 16 lat-5 dlO crO ro.98066 la59 lap.897506 1atp0 laav36.408 110908 eO sz1.59571 szs.986296 t1B0112.2 th.848712 io136.159 ch27.4932 chc.732292 qd5.00229 ssch10911 conn3. 

25407 disc23.4663 pend.230426 cpu5515.8B uO 
rl 10 t13 s1 110 lat-1 d20 crl ro15.2739 la66 1ap.901883 latpO laav59.2635 11009 eO sz100 szsO ti6a062.7 th6.56215 iol6.7991 ch37,5749 chc1.5554 qd1.00099 sschl0090 conn16.1579 di 

sc20.1441 pend.231364 cpu3072.1 uO 
rl 10 tl3 sl 110 lat-2 d20 cr1 ro12.154 la67 lap.907957 1atp0 laav58.4596 12727 eO sz100 szsO ti80101.4 th13.2966 io34.0443 ch40.6704 chc1.34514 qd2.00147 ssch27280 connl6.1573 d1 
sc23.155 pend.24304 cpu7249.B4 uO 
rl 10 tl3 sl 110 1at-3 d20 crl ro7.21598 1a89 1ap.904019 latpO laav69.9565 12563 eO sz100 szsO t160120.4 th16.6528 io42.6311 ch38.395 chcl.26894 qd3,00351 ssch25640 connl6.1581 di 
sc20.8425 pend.2369 cpu6070.17 uO 
rl 10 t13 s1 110 lat-4 d20 cr1 ro5.428 1a113 lap.B97354 latpO laav84.4209 i2835 eO szlOO szsO t160128 thl8.4177 1o47.1494 ch36.9357 chc1.23684 qd4.00564 ssch28369 conn16.1599 disc 
19.3927 pend.235579 cpu648B.48 uO 
r1 10 tl3 s1 110 lat-6 d20 cr1 ro4.5305 1a166 lap.903161 1atp0 1aavl19.975 i3986 eO sz100 szsO t1B0160.2 th19.424 1o49.7254 ch36.347 chc1.22342 qd6.00903 ssch39907 connl6.1584 dis 
c1B.7665 pend.234889 cpu91J9.99 uO 
r1 10 t13 s1 110 1at268 d20 cr1 ro3.81745 la267 lap,899065 latp.903902 laavl84.82 i3101 eO sz100 szsO t160150.3 th20.1384 io51.5542 ch35,7852 chc1.45479 qd9,61754 ssch31064 conn16 
.1607 d1scl8.2555 pend.231738 cpu6997.21 uO 
rl 10 t13 s2 110 lat-1 d20 cr1 rol.04057 1~46 1ap.887811 latpO laav38.7214 12576 eO sz10 szsO ti100086 th1.00538 1o25.7378 ch37.3707 chc1.55027 qd1.00039 ssch2576 conn16.159 discl 
9.9779 pend.228571 cpu1069.98 uO 



msum 
rl 10 tl3 s2 110 lat-10 d20 crl ro1.63572 la64 l~p.897562 latpO laav46.6097 117025 eO szlO szsO t180094.4 th6.30319 io212.562 ch38.8742 chcl.39662 qdl0,0059 sschl7032 connl6.159 d 

isc21.3616 pend.231403 cpu10391.4 uO 
rl 10 tll s2 110 lat-120 d20 crl ro.998273 la491 lap.900194 latpO laav238.737 131016 eO szlO szso ti60895,7 th19.8957 io509.33 ch35,5888 chcl.26179 qdl20.464 ssch31132 connl6.1594 
dlscl7,9866 pend.231993 cpu17574.1 uO 

rl 10 t13 s2 110 lat-20 d20 crl ro1.29106 la9'/ lap.901098 latpO laav58.5605 18483 eO szlO szsO ti25109,7 th13.1968 io337.837 ch37.941 chcl.36602 qd20.0472 ssch8498 conn16.159 elise 

20.4072 pend.231885 cpu4297.37 uO 
rl 10 tlJ s2 110 lat-40 d20 crl rol.17599 la168 lap,900102 latpO laav89.5311 18873 eO szlO szsO ti20136.9 th17.2123 io440.634 ch36.9337 chcl.34399 qd40.1803 ssch8906 conn16.157 di 

sc19.3253 pend.230963 cpu4958.82 uO 
r1 10 t13 s2 110 lat-60 d20 cr1 rol.04756 la247 lap.900317 latpO laav122.614 112108 eO szlO szsO ti25371.7 th18.6416 1o477.224 ch36.2127 chcl.31462 qd60.2973 sschl2159 connl6.1606 

disc18.6516 petJd.232482 cpu6295.86 uO 
rl 10 t13 s2 110 1at-80 d20 crl rol.02431 la332 lap.899883 1atp0 laav158.468 130099 eO sz10 szsO ti60298.6 th19.4987 io499.166 ch35.9097 chc1.25027 qd80.2126 ssch30169 connl6.158l 

discl8.2853 pend.233526 cpu16479.4 uO 
rl 10 t13 s2 110 lat200 d20 crl ro1.48289 la202 lap.899572 latp.898323 laav108.062 15704 eO sz10 szsO t112545.1 thl7.761 io454.681 ch36.2732 chc3.25273 qd51.9111 ssch5742 conn16.1 

59 disc18.705 pend.231211 cpu4802 uO 
r1 10 t7 s3 16 lat-1 d20 cr1 ro28.3821 la203 lap.899859 1atp0 laavl26.968 1709 eO sz392.992 szs236.015 ti902B2.1 th12.0556 io7.85316 ch93.631 chc4.44212 qd1.00141 ssch7335 conn67. 

0923 disc23.4308 pend.230924 cpu2302.04 uO 
r1 10 t7 s3 16 1at·-10 d20 crl ro7.41292 la"/62 l;,;p.900135 1atp0 1aav539.188 11483 eO sz397.636 szs238.223 ti80607.6 th28.5766 io18.3978 ch95.7659 chc3.67781 qd10.0674 ssch15652 con 

n68.8772 disc23.6756 pend.230665 cpu3672.81 uO 
r1 10 t7 s3 16 lat-2 d2J cr1 ro24.3435 la216 lap.901739 1atp0 laav138.982 i1150 eO sz395.217 szs233.114 ti80200.7 th22.1368 io14.339 ch96.9851 chc3.40439 qd2.00348 ssch12132 conn6 

7.9881 disc25.7417 pend.232018 cpu3314.31 uO 
rl 10 t7 s3 16 lat-3 d20 cr1 ro15.3388 1a294 1ap.9 latpO laavl87.484 11600 eO sz398.989 szs230,14 til09487 th24.8159 io15.9224 ch96.8884 chc3.27476 qd3.00562 ssch17206 conn68.4666 

disc25.0257 pend.231971 cpu4275.09 uO 
r1 10 t'7 s3 Hi lat-4 d20 cr1 ro12.5302 la355 lap.900713 latpO laav227.831 12105 eO sz383.348 szs240.341 til20436 th26.1727 iol7.4781 ch94.4'107 chc3.19076 qd4.0076 ssch21866 conn66 

.6769 disc24.5411 pend.232438 cpu5286.51 uO 
rl 10 t7 s3 16 1at-6 d20 crl ro9.05292 1a497 1ap.900407 latpO laav324.507 i1477 eO sz391.414 szs240.545 ti80516.3 th28.0474 io18.3441 ch94.6888 chc3.45777 qd6.02437 sschl5293 conn 

67.6014 disc23.7628 pend.231066 cpu3600.67 uO 
r1 10 t7 s4 16 lat-10 d20 crl ro1.2904 laSS lap.901971 1atp0 laav34.5171 111466 eO sz1.57841 szs.979558 ti40075.2 th1.76407 io286.112 ch26.26 chc.896487 qd10.0087 ssch12626 conn3. 

22773 disc22.2075 pend.230078 cpu7178.12 uO 
r1 10 t? s4 16 lat-20 d20 crl ro1.20264 la86 lap.899735 latpO laav47.5956 116609 eO sz1.57969 szs.958429 ti40047.7 th2.55916 1o414.731 c!L26.l216 chc.828242 qd20.0241 ssch18256 con 

n3.22763 disc22.255 pend.230282 cpu11742.1 uO 
rl 10 t7 s4 16 1at-40 d20 cr1 ro.964686 1a158 lap.B99722 1atp0 laav75.8338 131361 eO sz1.58267 szs.97109 ti60159.3 th3.22282 io521.299 ch25.9161 chc.78415 qd40.051 ssch34534 conn3 

.23292 disc21.8344 pend.230329 cpu19140.7 uO 
rl 10 t7 s4 16 lat-60 d20 crl ro.958985 la239 1ap.900165 latpO laav10'1.102 155716 eO sz1.59236 szs.981172 til00286 th3.45573 io555.569 ch25.7732 chc.780143 qd60.0646 ssch61315 con 

n3. 24 677 disc21. 6683 pend. 230828 cpu34985. 9 uO 
r1 10 t7 s4 1.6 lat-80 d20 cr1 ro.924845 la324 1ap.899718 latpO 1aav137.769 134593 eO szl.57234 szs.939613 ti60744.7 th3.49773 io569.481 ch25.6817 chc.B03737 qd80.185 ssch38138 con 

n3.21715 disc21.602'1 pend.231409 cpu21306.3 uO 
rl 10 t7 :>4 16 lat-1 d20 cr1 ro1.1807 la35 lap.901693 1atp0 1aav26.5444 i3367 eO szl.56638 szs.951905 ti90045.5 th.22879 io37.3922 ch24.8815 chc1.08594 qd1.0003 ssch3705 conn3.206 

11 disc20.9323 pend.230055 cpu1722.05 uO 
r1 10 t8 sJ 16 lat-2 d20 cr1 ro12.7413 la278 1ap.899876 latpO laav197.83/ i809 eO sz395.726 szs230.404 tl80380.2 th15.558 io10.0647 ch97.0105 chc2.97011 qd2.00494 sschl4786 conn67 

.8461 disc26.058 pend.230731 cpu3291.64 uO 
r1 10 tB s3 16 1at-3 d20 cr1 ro9.4173l la382 1ap.902468 1atp0 laav282.131 1851 eO sz393.031 szs233.047 t180421.3 th16.2459 io10.5818 ch97.119 chc3.03891 qd3.01058 ssch15346 conn67 

.9386 disc26.2374 pend.231236 cpu3359.14 uO 
rl 10 t8 s3 16 lat-5 d20 crl ro7. 78226 1a589 lap.899851 latpO 1aav448.055 1669 eO sz391.049 szs223.265 ti60452.3 th16.9046 io11.0666 ch94.8819 chc3.43829 qd5.03737 ssch12035 conn6 

7.1324 disc24.9378 pend.230315 cpu2616.18 uO 
rl 10 t8 s3 16 1at-l d20 cr1 ro41.1312 1a223 lap.900187 latpO 1aav139.854 11072 eO sz387.08 szs233.077 ti150404 th10.777 io7.12746 ch95.2532 chc3.34393 qd1.00093 sschl9436 conn66. 

674 disc25.8446 pend.230816 cpu5496.81 uO 
r1 10 t8 s4 16 1at-10 d20 crl ro1.96273 la85 1ap.899255 latpO laav50.8573 111675 eO sz1.59143 szs.976957 t160128.6 th1.20705 io194.16'1 ch27.7042 chc.840656 qdl0.0086 ssch22193 con 

n3.24216 disc23.6588 pend.230225 cpu10772.8 uO 
rl 10 tB s4 16 lat-20 d20 cr1 ro1.81778 la150 lap.899976 latpO Jaav77.7727 125451 eO sd.58135 szs.969057 ti100168 th1.56952 io254.084 ch27.8575 chc.77TI86 qd20.0157 ssch48433 con 

n3. 22708 disc23 .8177 pend. 230053 cpu26050. 5 uO 
r1 10 tB s4 16 lat-30 d20 cr1 ro1.51382 la217 1ap.899682 latpO laav105.338 116982 eO sz1.56695 szs.958673 ti60165.8 th1.72765 io282.254 ch27.7756 chc.78234 qd30.053 ssch32302 conn 

3.20754 disc23.7539 pend.230465 cpu14630.9 uO 
r1 10 tB s4 16 1at-40 d20 crl ro1.40575 la315 lap.900043 latpO laav137.832 134644 eO sz1.58674 szs.966957 ti120367 th1.78397 io287.82l ch27.8915 chc.780023 qd40.0462 ssch65857 con 

n3.23728 disc23.8411 pend.230828 cpu2'1303 uO 
r1 10 L8 s4 16 lat-5 d20 crl ro2.13219 la61 lap.902366 latpO laav39.5674 110017 eO sz1.58481 szs.969651 ti80122.4 th.773962 io125.021 ch27.5587 chc.90235 qd5.0025 sschl9039 conn3. 

23515 disc23.5418 pend.229101 cpu8392.07 uO 
rl 10 tB s4 16 1at-1 d20 cr-1 ro2.15065 1a41 lap.898073 1atp0 laav33.1545 12698 eO sz1.59081 szs.949865 ti90030.6 th.186221 io29.9676 ch27.2992 chcl.08591 qd1.00037 ssch5129 conn3. 

2479'/ disc23.3078 pend.229522 cpu2048.25 uO 

r1 10 t9 s1 110 lat-1 d20 cr1 ro23. 7551 1a79 lap.90024 latpO 1aav71.8749 1832 eO sz100 szsO ti60115.8 th5.40624 io13.84 ch40.6527 chc1.33362 qd1.0012 sschl6640 conn16.148 disc23.3 

n1 pend.230969 cpu4497.08 uO 
r1 10 t9 sl. 110 1at-2 d20 cr1 ro6.65526 lalOO lap.935391 latpO laav85.753 i1393 eO szlOO szsO t160108.1 th9.05269 io23.1749 ch40.3174 chcl.l1262 qd2.00287 ssch27880 conn16.1455 di 

sc22. 9439 pend. 2334 94 cpu5806. 27 uO 
r1 10 t9 sl 110 lat-3 d20 cr1 ro6.36716 1al48 lap.845661 latpO 1aav127.49 11406 eO sz100 szsO ti60100.5 th9.13834 io23.3942 ch40.1976 chc1.13216 qd3.0064 ssch28141 conn16.1449 dis 
c22.8148 pend.2J4"16'7 cpu5812.09 uO 
r1 10 t9 &1 110 lat76B d20 crl ro6.97658 la2'19 lap.900648 latp.898488 laav212.635 11389 eO szlOO szsO t!60160.2 th9.0189 !o23.0884 ch40.2343 chc1.50164 qd4.9Sl04 ssch21813 connl6. 



msum 
1451 disc22.861 pend.233118 cpu5824.14 110 
rl 10 t9 s2 110 lat-1 d20 crl r-o2.51685 la54 lap.6924'19 latpO laav46.9336 11702 eO szlO szsO t180133.9 th.829666 io21.2394 ch40"4852 chcl,44619 qdl.00059 ssch3404 connl6.1492 disc 
23.2104 pend.229716 cpu1226.12 uO 
rl 10 t9 s2 110 lat-10 d20 crl ro2.38107 lal20 lap.900546 latpO laav71.0267 111184 eO szlO szsO t18009B.2 th5.45424 iol39.629 ch40,3331 chcl.21833 qdl0.0089 ssch22378 conn16.1458 
disc22.9735 pend.230924 cpu9855,31 uO 
rl 10 t9 s2 110 lat-20 d20 crl ro2.1642 la210 lap.900034 latpO laav109,592 114507 eO szlO szsO ti80335.1 th7.05395 io180.581 ch40.3846 chcl.l6934 qd20.0276 ssch29048 connl6.1462 d 
isc22.999 pend.231918 cpu14141.7 uO 
rl 10 t9 s2 110 1at-30 d20 cr1 ro2.01732 la295 lap.89974 1atp0 laavl46.947 116222 eO szlO szsO ti80330.9 th7.88827 io201.94 ch40.2482 chcl.l4463 qd30.0555 ssch32495 connl6.1467 di 
sc22.85Bl pend.231794 cpu16035.6 uO 
rl 10 t9 s2 110 lat-40 d20 cr1 ro1.63796 1a389 1ap.B99739 latpO 1aav188.867 121100 eO sz10 szsO t1100569 th8,19558 1o209.807 ch40.3267 chcl.12995 qd40.0758 ssch42264 conn16.1452 d 
1sc22.9405 pend.231517 cpu16671.1 uO 
rl 10 t9 s2 110 1at-5 d20 crl ro2.61177 1a83 lap.903196 latpO laav55.5331 15382 eO szlO szsO t160106.4 th3.4977 io89.5412 ch40.2843 chc1.31357 qd5.00465 sschl0767 conn16.1456 disc 
22.9519 pend.230452 cpu3939.94 uO 
rl 10 t9 s2 110 lat-60 d20 cr1 ro1.39577 laSSO lap.900068 latpO laav270.79 113253 eO sz10 szsO t161270.4 th8.44935 io216.303 ch40.3588 chc1.17132 qd60,2716 ssch26609 connl6.1472 d 
1sc22.9657 pend.232227 cpu9134.22 uO 
rl 10 t9 s2 110 lat200 d20 cr1 ro2.24985 lal97 lap.90045B latp.906038 laavl05.451 118116 eO szlO szsO t1100186 th7.0634 1o180.823 ch40.2597 chc1,23105 qd19.2829 ssch36257 conn16.1 
459 disc22.B907 pend.23091 cpu189'13 uO 
rl 10 t9 s4 110 lat-1 d20 cr1 ro2.29313 la42 lap,898698 latpO laav33.7869 11767 eO szl.59253 szs,971181 t160049.2 th.183053 1o29.4259 ch27.4406 chcl.03223 qd1.00057 ssch3534 conn3 
.24759 disc23,4602 pend.228908 cpu1282.2 uO 
rl 10 t9 s4 110 lat-10 d20 cr1 ro1.89674 la84 lap.B97723 latpO laav50.5351 111773 eO sz1.58201 szs.985328 ti60080.8 thl.21093 lo195.953 ch27.6324 chc.B25088 qd10.0085 ssch23564 co 
nn3.22888 disc23.5975 pend.230757 cpu9981.45 uO 
r1 10 t9 s4 110 lat-20 d20 cr1 ro1.82327 la146 lap.900253 latpO laav76.9875 115440 eO szl.S7494 szs.947293 ti60143.1 th1.57937 io256.721 ch27.7337 chc.769654 qd20.0259 ssch30911 c 
onn3.21774 disc23.6943 pend.230856 cpu15475.1 uO 
r1 10 t9 s4 110 lat-30 d20 crl ro1.32491 la202 lap.899463 latpO laav104.391 14306 eO sz1.57524 szs.951948 ti15430.7 th1.7171 1o279.053 ch27.9022 chc.845771 qd30.209 ssch8655 conn3 
.2176 disc23.8692 pend.231243 cpu3109.07 uO 
r1 10 t9 s4 110 1at-40 d20 cr1 ro1,32312 la286 lap.900056 1atp0 laav133.722 117858 eO szl.S8159 szs.953024 t160418.5 th1.82607 io295.572 ch27.9288 chc.748602 qd40.0896 ssch35769 c 
onn3.22827 disc23.8876 pend.231555 cpu13395.5 uO 
rl 10 t9 s4 110 lat-5 d20 crl ro2.21947 la61 lap.902265 latpO laav39.4625 11551 eO sz1.58496 szs.983323 tl60100.9 th.777859 1o125.639 ch27.5223 chc.904422 qd5.00331 sschl5106 conn 
3.23487 disc23.4948 pend,230368 cpu5872.32 uO 
rS 10 t13 s1 110 lat-1 dl1 cr5 ro11.3352 la67 lap,905592 latpO laav59,9421 11663 eO szlOO szsO ti100150 th6.48636 1o16.6051 ch40.5656 chc1,27696 qd1,0006 ssch16630 conn16.1577 dis 
c23.1211 pend.243831 cpu4351.58 uO 
rS 10 t13 sl 110 lat-2 d11 crS ro4,50801 la99 lap,826176 latpO laav81.5456 11467 eO sz100 szsO ti60116.5 th9,53227 io24.4026 ch40.2647 chc1.21179 qd2.00273 ssch14678 conn16.1616 d 
isc22.82 pend.234687 cpu3320.55 uO 
r5 10 tl3 s1 110 lat-4 dll cr5 ro4.15937 la188 lap.899866 latpO laav160.013 11498 eO sz100 szsO ti60190.3 th9.72177 io24.8877 ch40.0174 chc1.25828 qd4,01068 ssch14987 conn16.1572 
disc22.5523 pend.235032 cpu3334.59 uO 
rS 10 t13 sl 110 lat268 d11 cr5 ro2.94511 1a269 lap.900048 latp.900048 laav224.715 12071 eO szlOO szsO ti80273.1 th10.0779 io25.7994 ch39.7233 chc1.43783 qd5.85128 ssch20747 conn1 
6.1602 disc22.2857 pend.233987 cpu4499.94 uO 
rS 10 tl3 s2 110 lat-1 d11 cr5 ro.761049 laSO lap.890287 latpO laav41.8532 11431 eO szlO szsO ti60079.9 th.930402 1o23.8183 ch40.9169 chc1.37684 qdl.0007 ssch1431 conn16.1538 disc 
23.5301 pend.235606 cpu542.523 uO 
rS 10 t13 s2 110 lat-11 d11 cr·5 ro1.03698 la117 lap.898769 1atp0 laav67.92 112928 eO sz10 szsO ti80120.9 th0.30297 io161.356 ch40.2002 chc1.21006 qd11.0094 ssch12940 conn16.15Bl d 
isc22. 7322 pend.230212 cpu<1563.46 uO 
r5 10 t13 s2 110 lat-22 d1l crS ro.919469 la200 l.ap.899603 latpO laavl04,356 112614 eO sz10 szsO t160174 th8.1885 io209,625 ch40.2157 chc1.18454 qd22.0384 ssch12634 conn16.1605 di 
sc22.7555 pend.231229 cpu4364.6 uO 
rS 10 t13 s2 110 lat-33 dl1 crS ro.822303 la294 lap,90023 latpO laav144.318 127388 eO sz10 szsO ti120344 th8.88986 1o227.58 ch40.1801 chc1.14896 qd33.0398 ssch27420 conn16.1602 d1 
sc22.7203 pend.231068 cpu9346,5J uO 
rS 10 t13 s2 110 lal-44 d11 cr5 ro.767645 la389 lap.900325 latpO laav185.579 114189 eO szlO szsO t160272,7 th9.19584 1o235.414 ch40.2438 chcl.18828 qd44.1364 ssch14232 connl6.1603 
disc22.7787 pend.233102 cpu4822.15 uO 

r5 10 t13 s2 110 lat-5 d11 cr5 ro.B41438 1a80 1ap.B97993 latpO 1aav51.0889 19764 eO szlO szsO ti100072 th3.81133 1o97.57 ch40.3146 chc1.24967 qd5,00256 ssch9765 connl6.1584 disc22 
.8712 pend.232445 cpu3517.B uO 
rS 10 t13 s2 110 lat-66 dll cr5 ro.640518 la567 1ap.900071 latpO laav265,378 119765 eO sz10 szsO t180801.5 th9.55515 1o244.612 ch40.232 chcl.17719 qd66.2204 ssch19832 conn16.1548 
d1sc22. 7583 pend.232565 cpu6569.03 uO 
r5 10 tl3 s2 110 lat200 d11 crS ro.93057 la197 lap.900494 latp.90679 laav99.4472 116223 eO sz10 szsO tl80316.6 th7.89016 1o201.988 ch40.2069 chc1.31036 qd20.2483 ssch16243 conn16, 
1591 disc22.7534 pend.231823 cpu5650. 72 uO 
r5 10 t7 s3 16 1at-2 d11 crS ro7.7907 la283 lap.899408 latpO laavl96.935 11014 e3235.93 sz390.566 szs229.73 ti100418 th15.40~7 1o10.0978 ch91.6424 chc3.21165 qd2.00394 ssch11083 c 
onn63,1781 disc25.4343 pend,230707 cpu5470.34 uO 
rS 10 t7 s3 16 lat-4 d11 cr5 ro4.21931 la525 lap.B97764 1atp0 1aav383.179 1626 e2369.68 sz398.297 szs253.855 ti60459.2 th16.1094 io10.3541 ch93.4352 chc3.8287 qd4.02556 ssch6814 c 
onn64,9666 disc2S.3834 pend.230791 cpu3608,66 uO 
rS 10 t7 s3 16 lat-6 dll cr5 ro~.22572 1a725 l~p.900592 latpO laav567.386 1845 e2774,39 sz390.217 szs237.551 ti80592 th15.982 1o10.4849 ch90,7573 chc3.67889 qd6.0426 ssch9293 conn 
63.2664 d1sc24.742 pend.232089 cpu4501.05 uO 
rS 10 t7 s3 16 lat-1 d11 cr5 ro26.5285 1a208 lap.900439 latpO 1aav131.445 1683 e2249.52 sz398.141 szs233.776 t190151.8 th11.7826 1o7.57611 ch91.3708 chc4,11648 qd1.00146 ssch7594 
conn63.2539 disc25.1296 pend.233026 cpu4109.86 uO 
r5 10 t7 s4 16 lat-ll dl1 crS ro.B17174 la106 lap.900854 latpO laav56,3015 115576 e297.186 sz1.58109 szs.957883 ti80129.5 th1.20055 1o194.385 ch25.8626 chc.698252 qdll.0078 ssch20 
248 conn3.23577 dlsc21.8449 pend.230998 cpu7756.29 uO 
r5 10 t7 s4 16 lat-22 dl1 crS ro.743794 lal99 1ap,900806 latpO laav93.1213 123J82 e459.579 sz1.59092 szs.983939 t1100316 th1.4609 io235.078 ch25.937 chc.672224 qd22.0205 ssch30704 

conn3.24732 dlsc21.9042 pend.230374 cpu11605.2 uO 



msum 
r5 10 t7 s4 16 lat.-33 dll crS ro.681618 la289 lap.900211 latpO laav129.944 115187 e298.306 szl.59176 szs.9"/1609 ti60519.8 thl.56031 io250.943 ch25.978 chc.692001 qd33.0717 sschl98 

29 conrd.239 disc2l.Yq6J pend.231993 cpu7440.9"1 uO 

r5 10 t7 s4 16 lat-44 dll cr5 ro.642475 la376 lap.899948 latpO laavl64.73 121299 e421.526 sz1.58176 szs.965832 ti80794.5 lhl.62884 io263.619 ch25.8493 chc.686362 qd44.0909 ssch277 

34 conn3.23948 disc21.8129 pend.232513 cpul0350.1 uO 

rS 10 t7 s4 16 lat-5 dll crS ro.961517 la67 lJp.900159 latpO laav39.6424 17532 el27.651 szl.58l92 szs.980185 ti60068.7 th.774829 io125.39 ch25.7289 chc.747658 qd5.00332 ssch9641 c 

onn3.21442 disc21.7467 pend.231385 cpu3809.34 uO 

rS 10 t7 s4 16 lat-1 dll crS ro.92443l la44 lap.900286 latpO laav30,4907 14894 e93,574 sz1.59338 szs.961543 til50075 th.202972 1o32.6104 ch25.5465 chc.832928 qdl.0002 ssch6427 con 

n3.24298 d1sc21.5582 pend.228596 cpu2543,29 uO 

r5 10 t8 s3 16 lat-2 dll crS rol0.2957 la348 lap.900901 1atp0 laav252.23 11110 e35558.2 sz407.169 szs246.236 ti140664 th12.5S09 1o7.89116 ch76.1838 chc2.73906 qd2.0036 ssch17266 c 

onn53.5191 disc21.9591 pend.232537 cpu33880 uO 

rS 10 t8 s3 16 lat-3 d11 cr5 ro8.2237 la475 lap.9 latpO 1aav358.376 1670 e20614.4 sz388.809 szs239.849 ti80510.6 th12.6392 io8.32189 ch76.4364 chc3.06371 qd3.01343 sschl0255 connS 

2.1363 d'.sc2l.b669 pend.233583 cpul9509.4 uo 

r5 10 t8 s3-16 lat-5 dll crS ro8.22198 1a745 lap.896047 latpO laav586.453 1683 e20225,7 sz376.6 szs234.925 ti80671.3 thl2.455 io8.46645 ch75.7652 chc3.2365 qd5.0366 ssch10377 conn 

50.9275 disc22.2308 pend.232897 cpu19389, 7 uO 

rS 10 tB s3 16 lat-1 d11 cr5 ro23.7742 la220 lap.898914 latpO laav150.17 11197 e35558.3 sz392.126 szs240.523 til80488 th10.1586 io6,63203 ch76,6334 chc3.07127 qd1.00084 ssch18404 

conn52. 2654 d1sc21. 7497 pend. 235177 cpu35855. 6 uO 

r-5 10 tB s4 16 lat-10 dll crS rol.73291 la185 lap.900078 latpO 1aavl10.674 19012 e1532.18 .sz1.58"199 szs.978986 til00166 th.558097 1o89,9706 ch22.0802 chc.699433 qdlO.Olll ssch3328 

8 conn3.24279 dlsc18.0S77 pend.231575 cpu10805,1 uO 

r-5 10 tB s4 16 Jat-20 d11 cr5 ro1.46901 la352 lap,8996 latpO laav188.123 112744 e2204.97 sz1.5747 szs.938425 t1120295 th.651653 io105.94 ch22.1589 chc.685329 qd20.0314 ssch47231 c 

onn3.21773 discl8,15 pend.23149 cpul5024.4 uO 

rS 10 t8 s4 16 lat-40 dl1 cr5 ro1.34957 la745 lap.900062 latpO laav349,655 111376 e2033.26 szl.59448 szs,954154 t1100633 th.699674 1ol13.045 ch22.1529 chc.723549 qd40.1406 ssch421 

36 conn3.2477 d1scl8.1155 pend.231345 cpul3303.9 uO 

rS 10 tB s4 16 1at-5 d11 cr5 r-o2.01709 lal16 lap,899951 1atp0 laav73.4483 14069 e660.617 sz1.56992 szs.943912 t160059.4 th.415474 io67,7496 ch22.0242 chc.740487 qd5.00614 sschl498 

0 conn3.20749 discl8.0472 pend.231947 cpu4970.32 uO 

rS 10 t8 s4 16 1at-l dll crS ro2,6757 la57 1ap.891445 latpO laav48.4377 13086 e503,625 sz1.59559 szs.94181 ti150143 th.l21H07 io20.5537 ch21.8946 chc.B41877 qdl.00032 ssch11450 co 

nn3.25162 disc17.8882 pend.231149 cpu3984.48 uO 

r5 10 t9 sl 110 1at-l d11 cr5 ro12.44 la67 Jap.910295 latpO laav60.0034 11661 e9703.57 sz100 szsO ti10018D th6.47662 io16.5802 ch40.2824 chc1.27141 qd1,0006 ssch18271 conn16.1581 

disc22,8321 pend.257247 cpu14146,9 uO 

rS 10 L9 s1 110 Jat-2 d11 cr5 ro3.5846 1al00 lap,946159 latpO 1aav85,8222 11393 e9912.85 sz100 szsO ti60108.1 th9.0527 !o23.1749 ch40,587 chcl.2164 qd2.00287 ssch15334 connl6.1585 

disc23.0979 pend.2.16918 cpu11373.1 uO 

rS 10 t9 sl llO lat-3 d11 crS ro4.11784 1al49 lap.952722 latpO laav128.673 11396 e9791.93 szlOO szsO ti60185.1 th9.06059 io23.1951 ch40.1174 chc1.25091 qd3.00645 ssch15371 conn16. 

1584 disc22.6204 pend.240586 cpu11426.5 uD 

rS 10 t9 sl 110 lat268 d11 cr·S ro4.06988 la266 lap.903483 latp.904935 laav230.28 11378 e9768,3 sz100 szsO ti60223.1 th8.93812 io22.8816 ch40.3068 chcl.77467 qd5,31277 ssch15173 co 

nn16.1593 disc22,8234 pend.235602 cpul1298.4 uO 

r5 10 t9 s2 110 lat-1 d11 cr5 ro3.69701 la89 1ap.897959 latpO laav81,5787 1735 e993.36 sz10 szsO t160105 th.477679 1o12.2286 ch36.6223 chcl.44301 qd1.00136 ssch2940 conn16.1567 di 

sc19.2091 pend.229094 cpul859.14 uo 

r5 10 t9 s2 110 lat-10 dll crS ro2.)7653 1a314 lap,899651 latpO laavl90.012 13153 e4581.52 sz10 szsO ti60243.5 th2.04444 1o52,3376 ch36.4097 Chcl"30682 qd10.0317 ssch12637 conn16. 

159 d1scl8.9162 pend.232004 cpu7595.85 uO 

rS 10 t9 s2 110 1at-132 d11 crS ro1.15346 la2000 lapl latpO laav1812.09 15695 e10349.6 sz10 szsO t184307.5 th2.63869 io67.5503 ch36.3819 chc1.61604 qdl35.06 ssch23115 conn16.1597 

disc18.9035 pend,232216 cpu13596.4 uO 

rS 10 t9 s2 110 1at-20 dl1 cr5 rol.99956 la609 lap.900224 latpO laav327.594 18525 el2949,3 sz10 szsO t1140696 th2.36687 io60.5918 ch36.4816 chcl.22886 qd20.0469 ssch34151 conn16.1 

594 disc19.0018 pend.234925 cpu20381.9 uO 

r5 10 t9 s2 110 lat-40 dll cr5 ro1.61506 la1188 lap.900151 1atp0 laav596.622 15333 e8738.11 szlO szsO ti81172.1 th2,5664 1o65.7 ch36.3179 chcl.34092 qd40.3 ssch21432 conn16.1585 d 

1~~18.842 pend.233299 cpu12679.6 uO 

rS 10 t9 s2 110 lat-5 d11 crS ro2.78434 la204 iap.901319 latpO laav127.437 12351 e3341.33 szlO szsO ti60135 th1.52716 1o39.0954 ch36.4993 chc1.32088 qrt5.01063 ssch9409 connl6.1581 

disc19.0562 pend.230547 cpu5728.97 uO 

rS 10 t9 s2 110 lat200 d11 cr5 ro3.33065 la200 lap.900128 latp.901413 laav126.808 13114 e4401.69 szlO szsO t180141.2 th1.51783 io38,8564 ch36.36 chc1.48639 qd4.97431 ssch12466 con 

nl6.1587 discl8.9102 pend.229981 cpu7625.B uO 

rS 10 t9 s4 110 1at-1 d11 cr5 ro2.87246 laSS lap.8918l latpO laav50,4289 11978 e350.202 szl.55056 szs.901477 til00113 th.119669 1o19.7576 ch21.6847 chc.804393 qdl.00051 ssch7912 c 

onn3.1B51 disc17,7458 pend.22997 cpu2616.01 uO 

r5 10 t9 s4 110 lat-10 dll cr5 ro1.81561 la195 1ap.901278 1atp0 laav115.828 16894 e1328.16 sz1.58515 szs.944463 t180189.6 th.532332 io85,9713 ch21.9578 chc.707047 qd10.0145 ssch27 

603 conn3.23708 d1sc17.9391 pend.231377 cpu8495.24 uO 

r5 10 t9 s4 110 laL-20 dl1 crS ro1,50226 1a342 lap.899804 latpO laavl96.464 16111 el155.28 sz1.56292 szs.913503 t160558.8 th.616072 1ol00.91 ch21.8945 chc.712376 qd20.0655 ssch244 

98 conn3.2015 d1sc17.9023 pend.23172 cpu7344.58 uO 

r5 10 t9 s4 110 lat-5 dl1 crS ro2.18912 la122 lap,899562 latpO laav7ij,QJ16 16394 e1169.58 szl.56631 szs.965011 t1100189 th.390474 io63.8196 ch21.83ll chc.72733B qd5.00391 ssch2558 

6 conn3,2074 disc17.8489 pend.231637 cpu8056.23 uO 

rO 10 t7 s3 16 1at780 d10 crO_rps ro13.4774 la778 lap.9 latp.906299 laav436.65 11270 eO sz395.458 sls240.885 t1240861 th8.14514 io5.27276 ch146.228 chc3.95588 Qd2.498~3 ssch12101 

conn68,3471 d1sc72.2224 pend2.70542 cpu2930.02 uO 

rO 10 t7 s4 16 latl48 d10 crO rps ro.856389 1a151 lap.899252 latp.89636 laav72.9165 114190 eO sz1.59027 szs.97415 ti64927.7 th1.35764 1o218.551 ch30.1806 chc.736013 qd16,1677 ssch 

14203 conn3.24J39 disc26.1387-pend,251007 cpu8268.33 uO 

rl 10 t7 s3 16 lat780 d20 crl_rps ro12.6821 la788 lap.900069 latp.B96377 laav470.234 14333 eO sz391.318 szs237.89 ti442493 th14.9683 1o9.79224 chl49.276 chc3.41641 qd4.91369 ssch4 

5200 conn67.4098 d1sc74.2216 pend4,70533 cpu11621.8 uO 

r1 10 t7 s4 16 latl48 d20 cr1_rps ro1.02976 1a148 lap.B99919 latp,901434 1aav73.933 19951 eO sz1.58688 szs.957054 ti21970 th2.80762 1o452.935 ch28.94 chc1.04568 qd34.2326 ssch1096 

1 conn3.24001 disc24.8488 pend.250638 cpu6376.45 uO 

rL co ta s3 16 lat"/80 020 crl _rps rol5.3699 la780 lap.900433 latp.900433 laav523.24 i693 eO sz405,374 szs230.439 tl120664 th9,09437 io5,74324 ch161.472 chc4.30085 qd3.07504 ssch12 



msum 
661 conn70.021B disc84.9431 pend4.01129 cpu2988.66 uO 
rl 10 t8 s4 16 latl4B d20 crl rps rol.76362 la151 lap,B99317 latp.895413 laav77.877 113332 eO szl.59421 szs.984453 ti62487.7 thl.32864 io213.354 ch30.2383 chc.889074 Qdl7,0644 sse 
h25392 conn3.24638 disc26.1B07 pend.245807 cpu12355.5 uO 
rS 10 t7 s3 16 lat780 dll cr5 rps rol0.1128 la793 lap.899713 latp.891117 laav506.729 1698 el858.29 sz405.537 szs231.835 ti120920 th9.14421 io5.77239 chl46.399 chc4.2817 qd2.98567 
ssch7682 conn65.2225 disc76.025 pend2.46802 cpu3533.89 uO 
r5 10 t7 s4 16 latl46 dll crS rps ro.781576 la146 lap.899284 latp.905394 laav72.0881 111484 e222.717 sz1.58177 szs,959935 ti61066.6 thl.l6196 iol88.057 ch27.9394 chc.811588 qd13.8 148 ssch15049 conn3,23462 d1sC23.9189 pcnd.245678 cpu5736.15 uO 
r5 10 t8 s3 16 lat780 d11 cr5 rps ro16.0217 la797 1ap.900431 1atp.892672 laav472.658 12320 e6BS54.7 sz395,457 szs244.553 ti523840 th6.84146 1o4.42683 ch115.449 chc2.82027 qd2.2435 3 ssch35582 conn52.7427 disc58.0986 pend2.24576 cpu68312.5 uO 
rS 10 t8 s4 16 lat148 011 crS rps ro2.02673 1al48 lap.898715 latp.903599 laav89,5432 17780 el294.82 szl.58342 szs.971368 t1120242 th.400203 io64.7031 ch24.12 chc.758659 qd5.87738 
ssch28851 conn3.2358 d1sc20.0963 pend.251027 cpu9499. 74 uO 
rO 10 t7 sll 17 lat-1 dS crO _5 rol1.2365 lal80 lap.899746 latpO laav114.093 1788 eO sz199.187 szsll9.672 ti90108.2 th6.80427 1o8.74504 ch97.8557 chc4.03813 qd1.00127 ssch3768 conn 68,531 disc26.2164 pend.233376 cpul021.0~ uO 
rO 10 t7 s11 17 lat720 dS crO 5 ro1.65872 la713 1ap.899921 latp.903098 1aav503.688 11259 eO sz197.061 szsll8.693 ti120708 th8.02882 1o10.430l ch96.1804 chc4.64012 qd5.29627 ssch60 79 conn6"/,2675 disc25.7933 peflct.230354 cpu1467.05 uO 
r-0 10 t7 s41 19 lat-1 d20 cr0 __ 20 ro49.3459 la231 lap.899633 latpO laav146.782 1817 eO sz776.154 szs475,242 t:.i120300 th20.5903 io6.79134 ch96.1434 chc4.17927 qdl.00122 sschl5523 co 
nn67,193 dlsc25.778l pend.233497 cpu4367.56 uO 
rO 10 t7 s41 19 lat924 d20 crO 20 ro6.16034 la924 1ap.9 1atp.900781 laav693.B15 11280 eO sz764.621 szs473.908 t1l20929 th31.6144 1o10.5847 ch95.598 chc5.058 qd7.44062 ssch24302 co nn66,542 disc25.8244 pend.23154 cpu5192.47 uO 
rO 10 t7 s4 110 1at1~8 d20 crO 20 ro1.27936 1a153 lap.900117 latp.892282 laav82.0494 113707 eO szl.57584 szs.94497 ti26900,3 th3.13658 io509.547 ch27.7637 chc1.04333 qd42.9815 sse h13735 conn3.22159 disc23,6927-pend.230996 cpu11184.6 uO 
rO 10 t7 s4 110 lat148 dS crO_ 5 ro.799109 1a150 lap.900089 latp.896827 laav76.5153 126986 eO szl.5770B szs.94733 ti197483 th.841625 io136.65 ch27,8176 chc.614125 qdl0.7778 ssch269 
97 conn3.22366 disc23.8273 pe~d.230212 cpu15917.8 uO 
rO 10 t7 s4 15 1at-l d15 crO 15 ro.B27303 1a37 lap.891619 latpO laav28.1861 13174 eO sz1.57876 szs.981205 t190032.8 th.217412 io35.2538 ch27.134 chc.970004 qd1.00032 ssch3174 conn 3,22674 disc23.1624 pend.231723 cpu1364.63 uO 
rO 10 t7 s4 15 1atl4B dl5 crO 15 rol.06837 1a152 1ap.900897 1atp.895863 laav74.6596 112738 eO sz1.5843l szs.985128 tl34353.5 th2.29473 io370.792 ch27.7693 chc,915595 qd2B.2422 sse h12763 conn3.23579 disc23.7172 pend,230316 cpu9165.11 uO ' 
rO 10 t7 s4 17 1at-1 dS crO 5 ro.530468 1a37 1ap.907561 latpO laav27.9156 14274 eO sz1.62167 szs1.0251 ti120063 th.2255 1o35.598 ch27.2557 chc.'/01713 qdl.00023 ssch4275 conn3.2906 
disc23.2214 pend.231536 cp~1680.17 uO 

rO 10 L7 s4 17 lat148 d5 crO 5 ro,754723 lal43 lap.B99674 1atp.909394 laav70.1113 115027 eO sz1.594 szs1.00739 ti118544 th.789298 1ol26.763 ch27.4869 chc.651365 qd9,00413 sschl503 9 conn3.25145 disc23.4755 pe/1ct.230432 cpu8320.77 uO 
rO 10 t7 s4 19 1at-1 d20 cr-0 20 ro1,02513 la37 1ap,890799 1atp0 laav28.4825 13141 eO szl.59726 szsl.Oll48 t190039.4 th.217657 1o34.8847 ch27.2248 chc1.09595 qd1,00032 ssch3142 con n3.25133 disc23.2217 penct.23282 cpu1447.99 uO 
rO 10 t7 s4 19 tatl48 d20 crO 20 ro1.12144 1a146 1ap.899714 latp.904225 laav72.5909 16709 eO szl.59144 szs.961717 ti14078.9 th2.96237 ~o476.527 ch27.8381 chc1.2698 qd35,7478 ssch6 
733 conn3.24825 disc23. 7443 p~nd,230506 cpu4722.06 uO 
rO 10 t7 s8 15 .lat-1 d15 crO 15 ro31.3101 1a219 lap.90137 latpO 1aav137.013 11095 eO sz595.121 szs365.859 til50453 thl6.9192 1o7.27804 ch97.7473 chc3.86817 qd1.00091 ssch15596 con n68.7603 dlsc25.7511 pend.234316 cpu4232,05 uO 
rO 10 t7 s8 15 lat876 d15 crO 15 ro5.88047 la862 lap.902165 latp.907779 laav566.304 11247 eO sz580.484 szs353.55 ti120260 th23.5124 io10.3692 ch96.1939 chc5.01201 qd5.90778 ssch17 895 conn66. 7347 disc26.1571 pend.231838 cpu3909.27 uO 
r1 10 t7 sll 17 lat720 dlO cr1 5 ro3.50463 1a719 lap.899688 latp,901471 1aav451.993 12244 eO sz197.782 szs122.665 ti120529 thl4.384 1o18.618 ch94.2395 chc4.31234 qd8.47148 sschl19 
28 conn67. 776 disc23. 3355 pend~ 230975 cpu3111. 04 uO 
r1 10 t? s4 110 lat148 020 crl ro1.15581 la145 lap.900511 latp.906803 laav76,0867 17658 eO sz1,5B214 szs.964426 ti14033.9 th3.37241 1o545.679 ch25.7455 chc1.43898 qd43.0837 ssch84 51 conn3.23232 disc21.6663 pend.229933 cpu5709.65 uO 
rl 10 t7 s4 110 lat14B dlO crl 5 ro.766301 la151 lap.900832 latp.8948 laav75.449 i8296 eO sz1.58233 szs.980756 ti28319.7 th1.81066 io292.941 ch25.5761 chc.812798 qd22.3697 ssch913 5 conn3.22468 disc21.5467 pend~23019 cpu4407.63 uO 
r1 10 t7 s4 17 lat148 d10 crl 5 ro,885874 1a142 1ap.900004 1atp.909398 laav66.6186 124280 eO sz1.58386 szs.96216 t198903 thl,51885 io245.493 ch26.1913 chc.705472 qd16.6646 ssch268 
03 conn3.23521 disc22.1691 pe/1ct.231038 cpu14826.6 uO 
r1 10 tB sll 17 lat720 dlO crl 5 ro3.48483 la720 lap.899898 Lotp.900409 1aav447.272 11958 eO sz196,629 szs120.303 til60549 th8,32961 iol0.844.1 ch96.3563 chc3.44811 qd4.8907 ssch17 
824 conn68,061 disc25.6645 pend.231'275 cpu3969.25 uO 
rl 10 tB s4 110 lat148 d20 crl ro1.65207 1al52 lap.899926 latp.89404 laav78.4163 18190 eO sz1.58974 szs.966947 t130939.5 th1.64383 lo264,71 ch27.8979 chc.98308 qd21.2341 ssch15622 conn3.24293 disc23.8417 pend.23119 cpu7170.81 uO 
r1 10 t8 s4 110 1at14B d10 cr1 5 rol.l1532 1a148 1ap.898898 latp.904476 laav78,7912 17176 eO szl.57581 szs.998379 t149441.8 th.893411 1o145.14 ch27.6812 chc.7271 qdl1.5932 ssch136 17 conn3.21991 disc23.6934 pend.23093 cpu5199.95 uO 
r-1 10 tB s4 17 lat148 d10 cr1 5 ro1.23726 1al50 lap.899662 latp.897412 laav76.4706 110668 eO sz1.57415 szs.945771 tl80890 th.810949 io131.883 ch27,6153 chc.719427 qdl0.2518 ssch20 298 conn3.21872 dlsc23.6345 p€nd.231804 cpu8605.11 uO 
r5 10 t7 s11 17 1at720 d6 crS 5 ro2.35217 la713 lap.902786 latp.905882 laav482.412 11615 e2561.96 sz196.672 szs114.946 ti150370 th8.25113 1o10.7402 ch89.6619 chc4,04697 qd5.20557 ssch9595 conn61,3644 disc25.3l61 pend.231721 cpu4485.08 uO 
r5 10 t7 s41 19 1at924 d21 cr5 20 ro8.98857 1a926 1ap.900524 latp.896335 laav695,692 1956 e6902.48 sz822.302 szs489,902 ti100844 th30.4508 io9.47999 ch99.2061 chc5.38765 qd6.68 933 ssch20111 conn67.0755 disc25.9632 pend,231617 cpu10160.8 uO 
r5 10 t7 s4 110 1atl48 d21 crS 20 ro.912542 1al52 lap.898977 latp.B93101 laav76.8099 117748 e377.11 sz1.58153 szs.968467 t141264.1 th2.65714 1o430,108 ch26.15 chc.958191 qd33.6173 ssch23050 conn3.24099 disc22.0554 pend.23105 cpu8468.26 uO 
rS 10 t7 s4 110 latl48 d6 cr5 5 ro.571704 lalSO 1ap.901378 1atp.898098 laav77.8041 i9157 e174.73 sz1,57781 szs,982083 ti67451.8 th.836709 io135.756 ch26.0394 chc.671097 qd10.6295 ssch11895 conn3.23262 disc22.-0493 pend.230292 cpu3821.24 uO 
r5 10 t7 s4 15 latl46 d16 cr-5 15 ro.879569 lal47 1ap.900783 1atp.905402 1aav73.4226 117133 e339.44 sz1.57737 szs.945386 ti55661.7 th1.89657 io307,806 ch26,0123 chc.880246 qd22- 974 
4 ssch22338 conn3.22951 d1scii.9721 pend.230507 cpu8834.72 uO 



msum 
r5 10 t7 s4 17 latl48 d6 cr5_5 ro.647409 lcil46 lap.90093 latp.909062 laav72.056 112794 e227.564 szl.SB176 szs.958535 til03708 th.762246 io123.366 ch25.9617 chc.659978 qd9.06784 ss 

chl6505 conn3. 21968 disc21. 9796 pend. 232122 <!pu6043. 37 uO 
rS 10 t7 s4 19 Jat148 d21 crS 20 ro.967246 lal46 lap.899966 latp.904724 laav7J.0387 18840 e194.758 szl.58201 szs.986248 t121924.3 th2.4917 io403.205 ch25.95BB chc1.24'!02 qd29.9109 

sschl1623 conn3.23742 disc21~879 pend.230473 cpu4748.18 uO 
r'S 10 t7 s4 19 lat148 d20 crS 19 ro.936'17 lal47 lap.B99822 latp.902676 laav74.0598 127069 e557.129 szl.5855 szs.956773 t169859.7 th2.39979 io387.477 ch26.0315 chc.928929 qd29.2609 

ssch35059 conn3.24911 dlsc21:·941 pend.230403 Ct=Jul4316.7 uO 
r5 10 t7 sB 15 lat876 dl6 cr5_15 ro6.07754 la881 lap.B99745 latp.89719 laav671.535 11567 e8457.98 sz585.886 szs348.465 t1150820 th23.7765 io10.3899 ch91.9465 chc4.50626 qd7.06892 

ssch25128 conn63.4644 disc25.3114 pend.231075 cpu12639.7 uO 
r5 10 t8 sll 17 lat720 d6 crS 5 ro6.86114 la728 lap.900505 latp.895717 laav362.702 13759 e52413.9 sz198.059 szsll9.535 ti481245 th6.04313 io7.811 ch77.4232 chc2.87545 qd3.10694 ss 

ch31681 conn52.7428 disc22,09l3 pend.235653 cpu53967.3 uO 
r5 10 tB s41 19 Jat924 d21 cr5 20 ro26.8281 1a915 lap.B99635 1atp.902372 laav610.569 11096 e73051.4 sz787.814 szs473.178 t1140708 th23.9704 io7.78918 ch78,7 chc4.15716 qd4.76551 s 

sch31989 conn52.4603 disc21.5042 pend.23244 cpu67967.3 uO 
r5 10 t8 s4 110 latl48 d21 cr5_20 ro2.94622 lal51 1ap.90023 1atp.894262 laav91.8636 16543 e1224.06 szl.60813 szs.969601 ti45739.9 th.898593 io143.048 ch22.0368 chcl.08359 qd13.275 

4 ssch24192 conn3.27013 disc17.917 pend.230333 cpu633l.05 uO 
r5 10 ta s4 110 latl48 d6 cr5 5 ro1.31611 la149 lap.901771 latp.901771 Jaav92.7061 16979 e1437.4 szl.58136 szs.951392 til80233 th.30774 io49.B189 ch22.0387 chc.643815 qd4.6895 sse 

h33164 conn3.22705 d1sc18.0527 pend.232287 cpu9815.24 uO 
rS 10 tB s4 15 lat148 dl6 cr5 15 ro2.49271 la149 lap.898913 latp.898913 laav87,5639 157666 e9946.68 sz1.58823 szs.964906 t1570260 th.627366 io101.122 ch22.0217 chc.797074 qd9.4729 

3 ssch213208 conn3.23902 disci7.9759 pend.231492 cpu72937,4 uO 
rJ 10 t8 s4 17 latl4B d6 cr5_5 ro1.4414l 1<~146 lap.898521 l<~tp.912336 laav8U.7338 18179 e1339.62 sz1.58173 szs.950806 t1180126 th.280555 1o45.4072 ch22.0311 chc.653343 qd4.11407 s 

sch30350 conn3.23257 disc18.0432 pend.232104 cpu9431.19 uO 
r5 10 t8 s4 19 latl48 d21 ct·5 20 ro3.01312 lal48 l<~p.899211 latp.902753 laav88.8523 16216 ell29.82 szl.57883 szs.949783 t145708.9 th.838698 1ol35.991 ch22.0465 chcl.07097 qd12.231 

7 :.sch23040 conn3.22259 disc17.9822 !Jend.230767 cpu8238.61 uO 
rJ 10 t8 sa 15 lat876 d16 cr5 15 ro13,7673 la881 lap.900058 l<~tp.895991 laav603.941 11721 e82953.9 sz5B1.9 szs359.271 ti210881 thl8.5504 io8.16102 ch76.5043 chc3.76828 qd4.95352 s 
sch38170 conn51.9973 dlsc21.7752 pend.232808 cpu76307.6 uO 

tO 10 t13 s3 110 lat-1 dlO crO ro24.1547 la197 lap.901981 latpO laavl25.156 1959 eO sz394.277 szs228.843 ti120280 th12.2797 io7.97309 ch96.8582 chc3.B400l qdl.00104 ssch9188 conn 

67.6977 d1sc26.00~8 pend,233278 cpu23~2.57 uO 
rO 10 tl3 s3 110 l<~t788 dlO crO ro3.64949 la791 lap.B99764 latp.899764 1aav573.842 1848 eO sz386.82 szs233.658 t180755.4 th15.8669 io10.5008 ch95.4764 chc5.65818 qd6.11439 ssch81 

06 conn66.6576 disc25.5711 pend.232361 cpu1728.19 uo 
rO 10 t13 s4 110 lat-1 dlO crO ro.657311 la37 lap.911J94 latpO laav27.9834 15339 eO sz1.57558 szs.981974 t1150079 th.218947 io35.5745 ch27.1271 chc.B10185 q11.00019 ssch5340 conn 

3.22383 disc23.1584 pend.230352 cpu1974.33 uO 
cO 10 t13 s4 110 lat148 dlO crO ro.921574 la148 lap.90034 l<~tp.901735 laav74,3227 116502 eO sz1.58314 szs.954594 t162530.4 th1.63202 io263.904 ch27"706 chc.736584 qdl9.9243 sschl 

6519 conn3.23453 d1sc23.6834 pend.230716 cpu10148.2 uO 
rO 10 t7 s29 16 lat-1 d10 crO ro3.87013 laSS lap.902459 1atp0 laav48.9863 12440 eO sz36.1324 szs20.8056 t1120102 th2.86745 1o20.3161 ch40.2018 chc1.34676 qdl.00041 ssch8962 conn1 

5.9099 disc23.031 pend.253072 cpu2703.23 uO 
rO 10 t7 s29 16 lat232 d10 crO ro2.17502 la231 lap.901122 latp.908722 laavl31.007 113817 eO sz36,3502 szs20. 7552 ti270288 th7.25862 io51.1195 ch40,0181 chc1.17305 qd6,96562 ssch5 

1045 connl5.9164 disc22.8244 pend.244746 cpul4127.3 uO 
rO 10 t7 s31 16 lal-1 dlO crO ro11.4571 1<>96 lap.89892 lalpO laav69.2118 11296 eO sz134.397 szs78.3445 ti90083.3 th7.55282 io14.3867 ch51.3217 chc1.86782 qd1.00077 sschl0886 conn 

26.0891 disc23.5962 pend.247275 cpu2891.87 uO 
rO 10 t7 s31 16 lat384 dlO crO ro3.28456 la367 lap.899878 latp.899355 laav225.498 15734 eO sz135,S88 szs62.2777 t1270569 th11.2243 1o21.1924 ch51.4578 chc1.5999 qd4.8556 ssch4775 

2 conn26.5622 di~c23.2314 pend.235162 cpu10920.8 uO 
rO 10 t7 s32 16 lat-1 d10 crO ro34.1177 la285 lap.900289 latpO laavl73.793 1692 eO sz625.069 szs346.822 t1120497 th14.0223 1o5.74288 chl37.605 chc6.07034 qdl.00145 ssch6795 connl 

04.922 disc28.2079 pend.231869 cpu1802.68 uO 
rO 10 t7 s32 16 lat1140 dlO crO ro4.12009 la1143 lap.901361 latp.897959 laav770.7 1882 eO sz606.287 szs361.784 ti120747 thl7.2994 io7.30456 ch135.607 chc7.49206 qd5.72109 ssch864 

0 conn102.626 disc28 .. 1509 pend.231985 cpul903.84 uO 
rO 10 t7 s42 16 lat-1 dlO cr0 ro17.7719 lal41 lap.89905 latpO laav94.8532 1842 eO sz257.48 szsl49,159 ti80145.8 th10.5666 io10.5058 ch71.8674 chc2.45907 qdl.00119 ssch7861 conn45 

.2567 d1sc24.2773 pend.235598 cpu2059.14 uO 
rO 10 t7 s42 16 lat564 d10 crO ro3.64391 la565 1ap.9 latp.9 laav420.17 11130 eO sz254.466 szs155.822 t180296.5 th13.9885 1o14.0728 ch71.9261 chc3,26208 qd5.98053 sschl0470 con~45 

.1323 d1sc24.4134 pend.232662 cpu2339.99 uO 
rl 10 tl3 s3 110 lat788 d20 cr1 ro7.35353 la795 lap.899757 Jatp.893917 laav514.663 12055 eO sz395.247 szs246.818 t1100684 th31.5124 1o20.4104 ch94.5148 chc4.78664 qd10.5985 sschl 

9628 conn68.1244 d1sc22.8'789 pend.231043 cpu4606.16 uO 
r1 10 tl3 s4 110 latl48 d20 cr1 rc.969344 lal51 lap,900531 latp.897212 laav79.2317 19093 eO szl.5788 szs.939662 t113977.5 th4.01204 1o650,548 ch24.7844 chcl.l0495 qd53.2063 ssch9 

128 conn3.22619 disc20.6995 pend.230198 cpu5B42,51 uO 
r1 10 t7 s29 16 lat232 d20 crl ro3,06421 la231 lap.899987 latp.904119 laav127.527 115260 eO sz36.3325 szs20.6334 t1150176 th14.4213 io101.613 ch37,9218 chcl.26953 qdl3.205 ssch62 

175 connl5.916 dlsc20.6744 pend.233653 cpul8256 uO 
r1 10 t7 s31 16 lat384 d20 crl ro4.42954 la390 lap.699823 latp.89516 laav258.036 16221 eO sz133.754 szs80.8085 t1150385 th21.6133 1o41.3671 ch48.4263 chc1.79233 qdl0.7635 ssch567 

68 conn26.2967 disc20.4106 pend.232316 cpu13850,4 uO 
d 10 t7 s32 16 latl140 d20 crl ro8.98049 la1155 lap.900037 lalp.893673 laav757.148 12676 eO sz626.499 szs356,164 t1210702 th31.0811 iol2.7004 chl37,226 chc5.71585 qd9.69507 ssch 

28629 conn10~.632 disc26.7549 pend.231195 cpu6882.13 uO 
r1 10 t7 s42 16 lat564 d20 cr1 ro5,97754 la562 lap.899277 latp.90506 laav382.237 12076 eO sz251.758 szs148.742 t180571.4 th25.339 1o25.766 ch69.234 chc3.50043 qd9.97832 ssch21509 
conn44.892 d1sc21.9054 pend.23l"l32 cpu5189.77 uO 
rl 10 t8 s29 16 lat232 d20 cr1 ro4.31474 la235 1ap.899897 latp.894758 laav143,6"1 14865 eO sz36.8602 szs20.8721 ti90140 th7.77111 1o53,9716 ch39.8685 chcl,34538 qd7.81768 ssch3477 

4 conn15.9183 dlsc22.7539 pend.232006 cpu9092.33 uO 
r1 10 t8 s31 16 lat384 d20 crl ro5.3016 la381 lap.897765 latp.911555 laav274.772 12104 eO szl29.16 szs78.5525 ti90237.3 th11.7638 io23.3163 ch50.4B72 chcl.80293 qd6.4653 ssch3295 

2 conn25.648l disc23.3l69 pend.233311 cpu7416.16 uO 
r1 10 t8 s32 16 l<~t1140 d20 crl ro9.01628 la1131 lap.901189 latp.905764 laav764.642 11093 eO sz640.58 szs361.82 t1150795 thl9.1383 io1.24874 ch141.449 chc6.10374 qd5.59469 ssch20 



msum 
38/ connl08.418 d1sc28.8446 pcnd.230559 cpu4521.42 uO 
rl 10 t9 s3 110 lat'/88 d20 crl ro6.94645 la791 lcip.900358 latp.B97971 laav566.263 11676 eO sz392.589 szs245.939 ti160549 thl6.009 iol0.4392 ch96,4786 chc3.74037 qd5.95227 ssch317 

67 conn68.2fJ6 dtsc25.4102 pend.231602 cpu&nB.Jl uO 
rl 10 t9 s4 110 latl4B d20 crl rol.5812 lal51 lap.901287 latp.895945 laav77.9616 18254 eO sz1.57487 szs.933144 ti32337.6 th1.57023 io255.245 ch27,9017 chcl.00846 qd20.4351 sschl6 

534 conn3.21909 dJsc23.8778 pend.230321 cpu6881.83 uO 
rS 10 tlJ s3 110 lat/88 dll crS ro4.09699 la791 lap.B99763 latp.B9739 laav572.946 11686 eO sz402.837 szs240.666 til60844 th16.4946 iol0.4822 ch95.5716 chc4.11441 qd6.0427 ssch176 

J8 conn66.9424 di5c25.5324 pend.231412 cpu4060.99 uO 
r5 10 t13 s4 110 latl48 dl1 crS ro.607716 1al43 lap.B99363 latp.910124 laav71.8055 111635 eO sz1.59424 SZ5.983203 ti40526.3 thl.7879 io287,098 ch27.7313 chc.807752 qd20.8077 ssch 

11656 conn3.25182 d1sc23.6965 pend.230852 cpu4136.22 uO 
r5 10 t7 s29 16 1at232 dl1 crS ro2.85085 la231 1ap.898946 latp.904819 laav122.95 118219 e9131.75 sz36.9497 szs20,9164 ti420315 th6,25634 1o43.346 ch39.5144 chc1.19834 qd5.84302 s 

sch78002 conn16.0085 disc22.2237 pend.236517 cpu29700.7 uO 
rS 10 t7 s31 16 lat384 dll crS ro3.084 la381 lap.900746 latp.908955 laav275.362 12680 e3841.76 sz132.169 szs79.422 ti120246 tn11.506C io22,28'16 ch49.4233 chc1.82597 qd6.18918 sse 

h24665 conn24.9B97 disc22.8157 pend.233534 cpu8803.53 uO 
rS 10 t7 s32 16 lat1140 dl1 cr5 ro4.4191 1a1143 lap.90005 latp.B96072 laav783.97 12011 e10135.1 sz604.968 szs350.04 t1271431 th17.5083 io7,40888 chl28.548 chc5.56605 qd5.B4286 55 

ch22465 conn96.665 disc27.6126 pend.231636 cpu138Q3.9 uO 
r5 10 t7 s42 16 lat564 dll cr5 ro3.55574 1a563 lap.903061 latp.911565 laav421.372 11177 e2495.67 sz252.121 szs157.685 ti80406.1 thl4.4164 io14.6382 cl\68.9087 chc3.48147 qd6.24979 
ssch12150 conn42.6303 d1sc23.996 pend.232749 cpu4847.04 uO 
rS 10 t8 529 16 lat232 d11 crS ro5.63128 1a230 lap.900372 1atp.909171 1aav129.848 110228 e44752.1 sz37.1185 szs20.9776 t1540666 th2.7429l 1o1B.9174 ch37.7292 chc1.25717 qd2.90673 
ssch86'127 conn16.3337 disc20.0957 pend.238739 cpu62857.3 uO 
rS 10 t8 s31 16 lat384 d11 cr5 ro9.77173 la381 lap.900314 latp.903552 laav194,736 19881 el13242 sz133.603 szs79.0477 t1811541 th6.35428 1o12.1756 ch47.0787 chc1.55016 qd2.61036 s 

sch134219 conn24.531B dlsc20.942 pend.238007 cpul32789 uO 
rS 10 t8 s3~ 16 1at1140 dl1 cr5 ro10.0212 la1151 1ap.900133 la~p.890812 laav817.735 1751 e33267.8 sz58B.465 szs339.5B5 t1120460 th14.331 1o6.23441 cl\100.93 chc6.84744 qd5.14647 s 

schll774 conn74.152 d1sc23.3471 pend.232159 cpu30616.6 uO 
rS 10 t9 s3 L10 1at788 d11 crS ro5.98854 la764 Iap.900366 latp.904936 laav541.84 11094 e35558.4 sz393.229 szs241.965 t1120518 th13.9435 io9.07748 cl\82,7963 chc4.18272 qd4.95247 s 

sch147B3 conn56.8818 disc23.0959 pend.232085 cpu32813.9 uO 
r5 10 t9 s4 110 latl48 dll crS ro2.06456 1a149 lap.9J2746 1atp.902746 laav90.6663 110634 el954.09 sz1.5773 szs.932404 t1148196 th.442113 1o71.7562 ch21.8322 chc.753286 qd6.69466 

ssch42560 conn3.22528 d1sc17.8261 pend.2310B6 cpul3401.3 uO 
rO 1 t7 s29 16 lat-1 d10 crO ro7.73289 1a56 lap.902314 latpO laav46.0055 11945 eO sz33.2889 sz519.669 t190089.5 th2.80741 io21.5896 ch30.5946 chc.916292 qd1,00051 s5ch18477 conn6. 
44455 d1sc23.2542 pend.264611 cpu4825.3 uO 
rO 1 t7 s29 16 1at232 dlO crO ro2.55908 la233 lap,901587 1atp.901587 1aavl39,956 18505 eO sz32.9405 szs19.925 t1270268 th4.04921 1o31.4688 ch30,8584 chc.769077 qd4.44868 ssch80220 

conn6.43139 disc23.5296 pend.234319 cpu18134.4 uO 
rO 1 t7 s3 16 1at-1 dlO crO ro23.9002 1a196 1ap.899257 1atp0 1aav123. 794 11211 eO sz387.073 szs231.863 t1150318 thl2.1811 1o8.05625 ch95.113 chc3.54668 qd1.00083 ssch12043 conn64. 
9685 d1sc27.136B pend.234445 cpu3143.29 uO 
rO 1 t7 s3 16 1at780 d10 crO ro3.02699 1a779 lap.900747 latp.901814 laav609.637 1937 eO sz377,909 szs237.067 t190399 thl5.3011 iol0.3652 ch93.1064 chc5.38106 qd6.42263 ssch9357 co 
nn63.3425 disc26.7515 pend.23202 cpu2031.33 uO 
rO 1 t7 s4 16 lat-1 dlO crO ro1.15352 la39 lap.909317 latpO laav29.Jl52 14014 eO 5Zl,60438 sz5.964977 ti120068 tl\.209516 io33.431 cl\26.3915 chc.783133 qd1.00025 ssch6440 conn2.379 
07 disc23.2915 pend.2368 cpu2317,86 uO 
rO 1 L7 s4 16 lat156 dlO crO ro.92B234 1a161 lap.900923 1atp.B94167 1aav78.8866 139233 eO sz1.58879 szs.962066 ti2400B3 th1.01418 1o163,414 ch26.4914 chc.628824 qdl3.5317 ssch6234 
4 conn2.37875 disc23.3634 pend.232461 cpu23352.1 uO 
rl 1 t7 s29 16 lat232 d20 crl ro4.44936 la231 lap.899166 latp.903069 laav123.014 116909 eO sz32.6747 szs19.9487 ti300255 th7.18785 1o56.315~ ch29.4699 chc.B10805 qd7.307 ssch17495 
7 conn6.38933 d1sc22.133 pend.234056 cpu43507.4 uO 
rl 1 t7 s3 16 lat780 d20 cr1 ro6.88464 la779 lap.900589 latp.901325 1aav515.895 12716 eO 5Z384.149 szs239.659 t1150829 th27.0214 1o18.0072 ch93.2314 chc3.67827 qd9.39065 s5ch30142 

conn64.5031 disc25.6089 p~nd.231756 cpu6983.47 uO 
rl 1 t7 s4 16 lat148 d20 cr1 ro1.22001 la151 iap.90007 1atp.896895 laav75.3431 i97974 eO sz1.581l szs.960012 ti294089 th2.05756 io333.144 ch25.0773 chc.724723 qd26.29B7 ssch30142 
conn64.5031 d1sc25.6089 pend.231756 cpu68444.5 u1 
r1 1 tB s29 16 lat232 d20 crl ro5.93334 la234 lap.898673 latp.B95095 1aav128.842 18666 eO sz32.7045 szs19.8944 ti270167 th4.09783 io32.0765 ch30.9715 chc.786318 qd4.26321 sschl543 
71 conn6.40718 disc23.6597 pend.233436 cpu34952.5 uO 
rl 1 lS s3 16 lat780 d20 cr1 ro7.20171 la778 1ap.S99789 iatp.901547 1aav470.597 12844 eO sz391.748 szs239.674 ti270528 th16.0873 1o10.5128 ch95.4276 chc3,04602 qd5.01653 5sch54099 

conn65. 1574 disc26.8727 pend.231452 cpul1690.8 uO 
r1 1 ta s4 16 1atl48 d20 cr1 rol.92286 1a148 lap.899743 latp.90199 laav80.2482 115595 eO szl.57961 szs.951869 t190092.3 thl.06809 1o173.1 ch26.5941 chc.793674 qd13.9965 sscM6889 
conn2.37917 disc23,4471 pend.230866 cpu14644.3 uO 
r5 1 t7 s29 16 1aL232 d11 crS ro2.43385 la230 lap.901062 latp.913351 laav169.638 14801 e1172.91 sz32.7955 szs19.8368 ti150233 th4.09393 1o31.957 ch29.7166 chc.806434 qd5.46095 sse 
h51725 conn6.09009 dlsc22.7391 pend.233738 cpu13068 uO 
r5 1 t7 s3 16 lat780 dll cr5 ro4.21554 la793 lap.899001 1atp.891232 laav482.898 12703 ~6329.08 sz394.772 szs244.064 t1270698 thl5.3981 1o9.9853 ch92.3669 chc3.6301 qd4.88383 ssch3 
1074 conn62.9252 disc26.4083 pend.231627 cpul7177.5 uO 
r5 1 t7 s4 16 1at148 d11 crS ro.99488 la148 1ap.90088 1atp.902434 1aav78.2195 132176 e624.428 5Zl,59286 szs.968013 ti210141 th.952709 1ol53.116 ch25,1121 chc.642416 qdl2.2544 ssch 
63102 conn2.37966 dl.sc21.985 pend.231973 cpu20688.6 uO 
r5 1 t8 s29 16 1at232 d11 crS ro6.51337 1a235 1ap.90095 1atp.B96814 laavl22.764 18945 el8019.2 sz32.6714 szs19.862 ti420599 tl\2.71419 1o21.2673 ch26.2734 chc.786277 qd2.84919 5sch 
131494 conn5.55325 disc19.8511 pend.242029 cpu48603.3 uO 
r5 1 tB s3 16 lat780 dll crS ro6.33618 1a785 1ap.900138 latp.897837 laav531.504 12173 e50430.4 sz393.314 szs234.853 t1241076 th13.8486 1o9.01375 ch70.3827 chc2.8312 qd4.84768 ssch 
34738 conn46.0647 disc21.9238 pend.231777 cpu53704.4 uO 
r5 1 t8 s4 16 latl48 d11 crS ro2.25727 la147 lap.S98938 1atp.904248 laav92.5055 111490 e1960.69 szl.60139 szs.989694 til80140 th.398994 1o63.7836 ch21.63 chc.683325 qd5.96084 ssch 
56319 conn2.38635 d1sclH.5007 pend.23242 cpul'/063.2 uO 
rl 10 t10 s3 16 1al'/BO d20 cr1 ro7.38959 1a779 1ap.900877 1atp.906945 laav559.419 11483 eO sz383.635 szs230.499 ti120841 thl8.3909 1ol2.2723 ch94.9682 chc4.12938 qd6,94268 ssch239 
48 conn66.3359 disc25.7914 pend.231777 cpu5374.19 uO 



msum 
rl 10 tlO s4 16 ]atl48 d20 crl rol.37462 lal53 lap.900629 laLp.893888 laav76.7683 1246~7 eO szl.59302 szs.983642 tl87676.7 th1.74999 io281.226 ch27.7173 chc.B5931 qd22.0134 ssch41 

fl90 conn3.24669 disc23.6539 pcnd.230232 cpul7987.5 uO 
r1 10 tll sJ 16 lat780 d20 crl ro9.70465 la796 lap.900578 latp.B9191 laav446.498 iSBtJ4 eO sz392.544 szs240.838 ti451104 th20.0006 iol3,0435 ch96,8005 chc3.04431 qd5.94697 ssch8444 

7 conn68.2936 dlsc25.4802 pend.231445 cpu19720.6 uO 
rl 10 tll s4 16 Jat148 d20 crl rol.l3477 lal49 lap.899982 latp.B99982 laav73.7727 15582 eO szl.58259 szs.948459 tll6584.2 th2.08076 io336.585 ch27.3734 chc1.28574 qd25.3432 ssch83 
29 conn3.23636 disc23.3269 pend.228B91 cpu3548.17 uo 
rl 10 tl2 s3 16 l~t780 d20 crl ro8.81903 la795 lap.900541 latp.89027 Jaav477.84 11850 eO sz390.129 szs237.911 t1120960 th23.3076 1ol5.2943 ch95.2072 chc3.95255 qd7.46649 ssch23215 

conn6'/,3031 disc24. 7709 pend.231624 cpu5427.43 uO 
rl 10 tl2 s4 16 lat148 d20 crl rol.05331 la143 1ap.900764 latp.910519 laav70.4278 120852 eO sz1.58316 szs.953423 t152768.8 th2.44374 1o395.158 ch27.0144 chc.90114 qd28.4276 ssch27 
072 conn3.22938 disc22,9556 pend.2J07 cpul2668.2 uO 
r1 10 t7 s3 16 lat780 d20 crl ro7,3l506 la777 1ap.B99642 latp.903823 laav526.545 13351 eO sz393.677 szs233.723 til80860 th28.4926 io18.5281 ch94.6119 chc4.21389 qd9,86273 ssch3544 
3 conn67.6644 dl~c23,6592 pend.231619 cpu8428.74 uO 
rl 10 t7 s4 16 latl46 d20 crl ro1.14824 la142 lap.900116 latp,910812 laav70.8236 113874 eO sz1.59478 szs.986644 t127662.8 th3.1244 1o501.539 ch25.9125 chc1.08618 qd36,3416 sschl53 
11 conn3.26141 disc21.7997 pend.230979 cpul0319.1 uo 
rl 10 tB s3 16 1at780 d20 crl ro7.0149 la794 lap.900815 latp.B90285 laav509.254 12944 eO sz390.914 szs236.423 ti271229 thl6.5745 io10.8543 ch96.178 chc3.15155 qd5.59952 ssch53553 
conn67,3689 di.sc25.9602 pemJ.231518 cpull779. 7 uO 
r1 10 t8 s4 16 latl48 d20 crl ro1.70633 lalSl lap,699304 latp.894863 laav77,6186 18383 eO szl.56833 szs.944376 ti33757.5 thl.54074 io248.33 ch27.9492 chcl.10145 qdl9.7613 ssch1599 
9 conn3.23857 disc23.8968 pend.2305"14 cpu7635,77 uO 
rS 10 t10 s3 16 lat?BO dll crS ro7.41159 la793 lap.899746 latp.B92766 laav577.572 il576 e38216.7 sz390.72B szs233.813 ti1B1052 th13.2858 io8.70468 ch78.6607 chc3.74227 qd5.079:n s 
sch22'17l conn 53.7901 dl sc22 ,1997 pend. 232127 cpu37084. 2 uO 
rS 10 tlO s4 16 lat148 dll crS rol.7003 la145 lap.900766 latp.910573 laav/9.2716 128351 e3672.57 sz1.58023 szs.96712 t1351994 th.497178 io80.544 ch22.4552 chc.716772 qd7.10811 sse 
!188009 conn3.22789 discl8.4534 pend.230932 cpu29665.7 uO 
zS 10 t11 s3 16 lat780 dll crS ro6.20801 la793 lap.900777 latp.892409 laav53~.168 11675 e28253.4 sz394.983 szs245.341 til80675 tlll4.3039 io9.27078 ch84.099 chc4.0096 qd4.99045 bSC 
h21837 connS'/.6201 disc23. 5878 pend. 231985 cpu28553 .6 uO 
rS 10 tll' s4 16 l~tl48 dll crS rol.31896 la144 lap.8999 latp,913686 laav77.5995 110015 e919.557 sz1.58233 szs.957294 t186460.1 th.715964 io115,834 ch23.0894 chc.758186 qd9.09446 s 

sch2489l conn3.23277 d1scl9.0679 pend.231347 cpu8543.07 uO 
rS 10 tl2 s3 16 l~t780 dll crS ro6,06121 la790 lap.B99854 latp.896451 laav475.53B 12057 e20464.9 sz395.77 szs234.019 t1210776 thl5.0875 io9.75917 ch87.389 chc3.71401 qd4.66845 sse 
h24749 ~onn60.3137 disc24.1277 pend.232468 cpu22773.2 uO 
rS 10 tl2 s4 16 lat148 d11 crS ro1.0421 la145 lap,900354 latp.908641 laav73.5337 124869 el357.6 sz1.57602 szs.951592 til71062 th.895004 1o145.38 ch23.9855 chc.710389 qd11.3079 sse 
h47011 conn3.20936 dlsc19.9964 pend.23104 cpu16743.2 uO 
r5 10 t1 sJ 16 lat780 dl1 crS ro4.07356 la779 lap.900552 latp.90292 laav579.534 11267 e4451.46 sz391.711 szs234.774 til20693 th16.0627 iol0.4977 ch91.55 chc4.78054 qd6.16101 sschl 
3896 conn63.2224 d1sc25.2504 pend.231166 cpu6859.24 uO 
rS 10 t7 s4 16 lat148 d11 crS ro.744581 lal52 lap.899452 latp.B94407 laav76.7026 122809 e437.237 sz1.57565 szs.969248 ti101909 th1.37756 io223.816 ch25.8772 chc.714765 qdl7.4603 s 
sch29782 conn3.21999 disc21.8'/15 pend.231446 cpul1274.2 uO 
rS 10 t8 s3 16 lat780 dll crS ro8.26841 la785 lap.9 latp.899444 laav556.377 11800 e57045.7 sz401.173 szs247.472 ti220911 th12.7687 io8.14809 ch77.9747 chc3.34912 qd4.565 ssch27790 

colln53,2878 dLc22.0059 pend.232J9q cpu5ql64.3 uO 
1-5 10 tB ~4 16 latl48 dll cr5 rol.94845 la149 lap.9 latp.9 laav87.5946 i203H e3368.52 sz1.57426 szs.966197 ti277651 th.450515 io'/3.261 ch22.0298 chc,720801 qd6.62031 ssch75215 co 
nn3.2232l d1scl8.0324 pend.230877 cpu24776.2 uO 


